11 resultados para IPL

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the spatial and seasonal distribution of Thaumarchaeota in the water column and sediment of the southern North Sea using the specific intact polar lipid (IPL) hexose, phosphohexose (HPH) crenarchaeol, as well as thaumarchaeotal 16S rRNA gene abundances and expression. In the water column, a higher abundance of Thaumarchaeota was observed in the winter season than in the summer, which is in agreement with previous studies, but this was not the case in the sediment where Thaumarchaeota were most abundant in spring and summer. This observation corresponds well with the idea that ammonia availability is a key factor in thaumarchaeotal niche determination. In the surface waters of the southern North Sea, we observed a spatial variability in HPH crenarchaeol, thaumarchaeotal 16S rRNA gene abundance and transcriptional activity that corresponded well with the different water masses present. In bottom waters, a clear differentiation based on water masses was not observed; instead, we suggest that observed differences in thaumarchaeotal abundance with depth may be related to resuspension from the sediment. This could be due to suspension of benthic Thaumarchaeota to the water column or due to delivery of e.g. resuspended sediment or ammonium to the water column, which could be utilized by pelagic Thaumarchaeota. This study has shown that the seasonality of Thaumarchaeota in water and sediment is different and highlights the importance of water masses, currents and sedimentary processes in determining the spatial abundance of Thaumarchaeota in the southern North Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the distributions and carbon isotopic compositions of archaeal membrane lipids in gas-hydrate-bearing sediments collected from the northern Cascadia Margin offshore from Vancouver Island (Sites U1327 and U1328) by the R/V JOIDES Resolution during IODP Expedition 311. Archaeal lipid biomarkers, including glycerol dialkyl glycerol tetraethers (GDGTs), tend to become abundant below 100 mbsf (meters below sea floor). Tricyclic biphytane (BP[3]; which is a robust biomarker derived from GDGT), crenarchaeol, and other BPs exhibit d13C values of ca. -20 per mil, and become abundant between 130 and 230 mbsf at Site U1328. In this depth range, concentrations of ammonium and phosphate in interstitial waters also increase, suggesting that a larger population and higher activity of heterotrophic community consisting of crenarchaeota and other archaea decompose the sedimentary organic matter, thereby liberating ammonium and phosphate. Such crenarchaeotic activity can produce other metabolic products such as molecular hydrogen by fermentation of organic matter during diagenesis. Furthermore, near the organic matter decomposition zone (130 to 230 mbsf), a probable methanogen biomarker (13C-depleted BP[1] with d13C values as low as -48.8 per mil) becomes abundant, indicating that methanogens utilize these diagenetic products. The molecular and isotopic distributions of archaeal lipid biomarkers indicate that the archaeal community plays an important role in the biogeochemical cycles of deep-sea sediments, including both methanogenesis and nutrient recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2-8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL-GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death but it has been suggested that some of these IPL-GDGTs can, just like the CL-GDGTs, be preserved over geological timescales. Here, we examined IPL-GDGTs in deeply buried (0.2-186 mbsf, ~2.5 Myr) sediments from the Peru Margin. Direct measurements of the most abundant IPL-GDGT, IPL-crenarchaeol, specific for Thaumarchaeota, revealed depth profiles which differed per head group. Shallow sediments (<1 mbsf) contained IPL-crenarchaeol with both glycosidic- and phosphate headgroups, as also observed in thaumarchaeal enrichment cultures, marine suspended particulate matter and marine surface sediments. However, hexose, phosphohexose-crenarchaeol is not detected anymore below 6 mbsf (~7 kyr), suggesting a high lability. In contrast, IPL-crenarchaeol with glycosidic head groups is preserved over time scales of Myr. This agrees with previous analyses of deeply buried (>1 m) marine sediments, which only reported glycosidic and no phosphate-containing IPL-GDGTs. TEX86 values of CL-GDGTs did not markedly change with depth, and the TEX86 of IPL-derived GDGTs decreased only when the proportions of monohexose- to dihexose-GDGTs changed, likely due to the enhanced preservation of the monohexose GDGTs. Our results support the hypothesis that in situ GDGT production and differential IPL degradation in sediments is not substantially affecting TEX86 paleotemperature estimations based on CL GDGTs and indicate that likely only a small amount of IPL-GDGTs present in deeply buried sediments is part of cell membranes of active Archaea. The amount of archaeal biomass in the deep biosphere based on these IPLs may have been substantially overestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.