23 resultados para INTENSITY DISTRIBUTION
em Publishing Network for Geoscientific
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.
Resumo:
Au contents have been determined in 77 samples of basalts and sheeted diabase dikes. Pd has been evaluated in 39 of the samples. The mean amount of Au is 3 parts per billion (ppb), fluctuating from 0.4 to 10 ppb. Au contents appear to be independent in type and intensity of alteration as well as with depth sub-bottom, although in the lower part of Hole 504B, 1900-2000 mbsf, Au contents are markedly decreased (mean: 1.1 ppb) and show a distinct correlation with a decrease in Zn contents. Pd contents vary from 2 to 360 ppb (mean: 37 ppb) Pd is higher in basalts (53.7 ppb) and lower in diabase dikes (30 ppb), especially in moderately or strongly altered ones (12.5 ppb).
Resumo:
Quantitative records of Globorotalia puncticulata and Globorotalia inflata, the last two members of the Globorotalia (Globoconella) lineage, obtained from North Atlantic sediments collected at DSDP Site 552, ODP Site 659 and ODP Site 665, are used to examine fluctuations in the biogeographic distribution of these species in the Late Pliocene between 3 and 2 Ma. Abundance data indicate that prior to the expansion of Northern Hemisphere glaciation at about 2.5 Ma, Gr. puncticulata was an important component of the planktonic foraminiferal fauna and had a geographic distribution ranging from 2°N to at least 56°N in the North Atlantic. A previously undescribed 6 chambered variant of Gr. puncticulata is found at both Sites 659 and 665. The stratigraphic distribution of this morphotype is restricted, first occurring at 2.9 Ma and then disappearing when glacial intensity increased at 2.75 Ma (isotope stage 110). Similar declines in Gr. puncticulata abundances occurred during glacial isotope stages 102, 100, and 98 immediately prior to the extinction of Gr. puncticulata during glacial isotope stage 96. It appears that this extinction event was latitudinally diachronous within the North Atlantic, occurring earliest in the north at Site 552 (2.453 Ma), then at Site 659 (2.443 Ma) and later still in the Site 665 equatorial record (2.438 Ma). At Site 665 the first record of Gr. inflata occurs during glacial isotope stage 94 (2.416 Ma), shortly after the extinction of Gr. puncticulata. In the mid latitude North Atlantic there was a 340,000 year period following the disappearance of Gr. puncticulata when the Globoconella lineage was absent (the Gr. inflata gap). The Gr. inflata population found in the equatorial Atlantic must therefore have been introduced from the South Atlantic, probably by the South Equatorial Current. Faunal records from Sites 552 and 659 show that it was not until glacial isotope stage 78 (2.10 Ma) that Gr. inflata became widely established in the North Atlantic. Prior to this large-scale migration event, there were two limited colonisation events during glacial isotope stages 86 and 82 when Gr. inflata populations reached as far as Site 659 in the eastern North Atlantic. These incursions are believed to be reflect the entrainment of Gr. inflata within South Atlantic Central Water and the northward subsurface transport of individuals to the coastal upwelling zone off northwest Africa. It seems likely that the same mechanism was responsible for the re-establishment of the Globoconella lineage in the North Atlantic at 2.10 Ma, but in this instance additional factors, such as enhanced glacial circulation patterns and ecological changes within planktonic foraminiferal faunas, resulted in the successful expansion of Gr. inflata across the North Atlantic and the Mediterranean.
Resumo:
A combination of changes in the species composition of the radiolarian populations, and in the sediment chemical composition (content and mass accumulation rates of carbonate, organic carbon, and selected major and trace elements, with special attention paid to Ba) is used to reconstruct the variations in upwelling activity over the last 250 kyr in the Socotra gyre area (Somali-Socotra upwelling system, NW Indian Ocean). In the Socotra gyre (Core MD 962073 at 10°N), the variations in upwelling intensity are reconstructed by the upwelling radiolarian index (URI) while the thermocline/surface radiolarian index (TSRI) testifies to productivity variations during non-upwelling intervals. Despite an origin related both to marine and terrigenous inputs, the geochemical records of organic carbon, silica, and trace elements (Ba, P, Cu, and Zn) normalized to Al are controlled by the variations in surface paleoproductivity. The data indicate a continuous increase in upwelling intensity during the last 250 kyr with a maximum activity within the MIS 3, while high productivity periods in between the upwelling seasons occurred both during glacial and interglacial intervals. A comparison of our data with published observations from another gyre of the Somalian upwelling area located at 5°N in the Somali gyre area shows differences regarding periods of upwelling activity and their geochemical imprint. Three hypotheses are proposed to explain these differences: (1) changes in the planktonic community, resulting in more silica-rich deposits in the Socotra gyre, and more carbonate-rich deposits in the Somali gyre, that are controlled by differences in the source water of the upwelling; (2) a more important terrigenous input in the southern gyre; and (3) a different location of the sites relative to the geographic distribution of the upwelling gyres and hydrologic fronts.
Resumo:
Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.