33 resultados para ICTIOFAUNA DEMERSAL
em Publishing Network for Geoscientific
Resumo:
The gut contents and fatty acid composition of 49 fish belonging to five Antarctic demersal families (Nototheniidae, Macrouridae, Channichtyidae, Bathydraconidae and Artedidraconidae) sampled at two stations at the Southern Ocean shelf and deep sea (600 and 2150 m) were analysed in order to identify their main food resource by linking trophic biomarkers with the dietary items found in the fish guts. Main food items of most fish analysed were amphipod crustaceans (e.g. in 63% of Trematomus bernachii guts) and polychaetes (e.g. in 80% of Bathydraco sp. guts), but other food items including fish, other crustaceans and gastropods were also ingested. The most prominent fatty acids found were 20:5(n-3), 16:0, 22:6(n-3) and 18:1(n-9). The results of gut content and fatty acid analyses indicate that all fish except the Channichthyidae share similar food resources irrespective of their depth distribution, i.e. benthic amphipods and polychaetes. A difference of the dietary spectrum can be observed with ontogenetic phases rather than between species, as high values of typical calanoid copepod marker fatty acids as 22:1(n-11) indicate that younger (smaller) specimens include more zooplankton in their diet.
Resumo:
Seamounts and knolls are 'undersea mountains', the former rising more than 1000 m from the sea floor. These features provide important habitats for aquatic predators, demersal deep-sea fish and benthic invertebrates. However most seamounts have not been surveyed and their numbers and locations are not well known. Previous efforts to locate and quantify seamounts have used relatively coarse bathymetry grids. Here we use global bathymetric data at 30 arc-second resolution to identify seamounts and knolls. We identify 33,452 seamounts and 138,412 knolls, representing the largest global set of identified seamounts and knolls to date. We compare estimated seamount numbers, locations, and depths with validation sets of seamount data from New Zealand and Azores. This comparison indicates the method we apply finds 94% of seamounts, but may overestimate seamount numbers along ridges and in areas where faulting and seafloor spreading creates highly complex topography. The seamounts and knolls identified herein are significantly geographically biased towards areas surveyed with ship-based soundings. As only 6.5% of the ocean floor has been surveyed with soundings it is likely that new seamounts will be uncovered as surveying improves. Seamount habitats constitute approximately 4.7% of the ocean floor, whilst knolls cover 16.3%. Regional distribution of these features is examined, and we find a disproportionate number of productive knolls, with a summit depth of <1.5 km, located in the Southern Ocean. Less than 2% of seamounts are within marine protected areas and the majority of these are located within exclusive economic zones with few on the High Seas. The database of seamounts and knolls resulting from this study will be a useful resource for researchers and conservation planners.
Resumo:
Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.