149 resultados para Hylan G-f 20
em Publishing Network for Geoscientific
Resumo:
Planktic foraminiferal faunas and modern analogue technique estimates of sea surface temperature (SST) for the last 1 million years (Myr) are compared between core sites to the north (ODP 1125, 178 faunas) and south (DSDP 594, 374 faunas) of the present location of the Subtropical Front (STF), east of New Zealand. Faunas beneath cool subtropical water (STW) north of the STF are dominated by dextral Neogloboquadrina pachyderma, Globorotalia inflata, and Globigerina bulloides, whereas faunas to the south are strongly dominated by sinistral N. pachyderma (80-95% in glacials), with increased G. bulloides (20-50%) and dextral N. pachyderma (15-50%) in interglacials (beneath Subantarctic Water, or SAW). Canonical correspondence analysis indicates that at both sites, SST and related factors were the most important environmental influences on faunal composition. Greater climate-related faunal fluctuations occur in the south. Significant faunal changes occur through time at both sites, particularly towards the end of the mid-Pleistocene climate transition, MIS18-15 (e.g., decline of Globorotalia crassula in STW, disappearance of Globorotalia puncticulata in SAW), and during MIS8-5. Interglacial SST estimates in the north are similar to the present day throughout the last 1 Myr. To the south, interglacial SSTs are more variable with peaks 4-7 °C cooler than present through much of the early and middle Pleistocene, but in MIS11, MIS5.5, and early MIS1, peaks are estimated to have been 2-4 °C warmer than present. These high temperatures are attributed to southward spread of the STF across the submarine Chatham Rise, along which the STF appears to have been dynamically positioned throughout most of the last 1 Myr. For much of the last 1 Myr, glacial SST estimates in the north were only 1-2 °C cooler than the present interglacial, except in MIS16, MIS8, MIS6, and MIS4-2 when estimates are 4-7 °C cooler. These cooler temperatures are attributed to jetting of SAW through the Mernoo Saddle (across the Chatham Rise) and/or waning of the STW current. To the south, glacial SST estimates were consistently 10-11 °C cooler than present, similar to temperatures and faunas currently found in the vicinity of the Polar Front. One interpretation is that these cold temperatures reflect thermocline changes and increased Circumpolar Surface Water spinning off the Subantarctic Front as an enhanced Bounty Gyre along the south side of the Chatham Rise. For most of the last 1 Myr, the temperature gradient across the STF has been considerably greater than the present 4 °C. During glacial episodes, the STF in this region did not migrate northwards, but instead there was an intensification of the temperature gradient across it (interglacials 4-11 °C; glacials 8-14 °C).
Resumo:
Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.
Resumo:
Seasonal patterns in the partitioning of phytoplankton carbon during receding sea ice conditions in the eastern Bering Sea water column are presented using rates of 14C net primary productivity (NPP), phototrophic plankton carbon content, and POC export fluxes from shelf and slope waters in the spring (March 30-May 6) and summer (July 3-30) of 2008. At ice-covered and marginal ice zone (MIZ) stations on the inner and middle shelf in spring, NPP averaged 76 ± 93 mmol C/m**2/d, and in ice-free waters on the outer shelf NPP averaged 102 ± 137 mmol C/m**2/d. In summer, rates of NPP were more uniform across the entire shelf and averaged 43 ± 23 mmol C/m**2/d over the entire shelf. A concomitant shift was observed in the phototrophic pico-, nano-, and microplankton community in the chlorophyll maximum, from a diatom dominated system (80 ± 12% autotrophic C) in ice covered and MIZ waters in spring, to a microflagellate dominated system (71 ± 31% autotrophic C) in summer. Sediment trap POC fluxes near the 1% PAR depth in ice-free slope waters increased by 70% from spring to summer, from 10 ± 7 mmol C/m**2/d to 17 ± 5 mmol C/m**2/d, respectively. Over the shelf, under-ice trap fluxes at 20 m were higher, averaging 43 ± 17 mmol C/m**2/d POC export over the shelf and slope estimated from 234Th deficits averaged 11 ± 5 mmol C/m**2/d in spring and 10 ± 2 mmol C/m**2/d in summer. Average e-ratios calculated on a station-by-station basis decreased by ~ 30% from spring to summer, from 0.46 ± 0.48 in ice-covered and MIZ waters, to 0.33 ± 0.26 in summer, though the high uncertainty prevents a statistical differentiation of these data.