14 resultados para Hydrothermal synthesis. Acid catalysts and N-hexane cracking
em Publishing Network for Geoscientific
Resumo:
The book is devoted to regularities of spatial distribution, mineralogy and geochemistry of hydrothermal and hydrothermal-sedimentary manifestations of the Mid-Atlantic Ridge rift zone.
Resumo:
Attempts to classify pelagic sediments have been based either on appearance and composition, or on the ultimate origin of the components. In particular it appears feasible to distinguish minerals which crystallized in sea-water from those which formed in magmas, in hydrothermal solution, or by weathering under acidic conditions. It is the case of iron and manganese oxide mineral aggregates which constitute one of the major types of rock encountered on the ocean floor; according to Menard (unpublished) about 10% of the pelagic area of the Pacific is covered by such nodules. The nodules consist of intimately intergrown crystallites of different minerals among those identified, besides detrital minerals and organic matter, are opal, goethite, rutile, anatase, barite, nontronite, and at least three manganese oxide minerals of major importance. Arrhenius and Korkisch (1959) have attempted to separate from each other the different minerals constituting the nodules, in order to establish the details of their structure and the localization of the heavy metal ions. The results demonstrate (Table II) that copper and nickel are concentrated in the manganese oxide phases concentrated in the reducible fraction. Cobalt, part of the nickel and most of the chromium are distributed between these and the acid-soluble group of the non-manganese minerals, dominated by goethite and disordered FeOOH.
Resumo:
Marine birds are important predators in the marine ecosystem, and dietary studies can give useful information about their feeding ecology, food webs and oceanographic variability. The aim of this study was to increase our understanding of the diet and trophic level of the seabirds breeding in Kongsfjorden, Svalbard. We have used fatty acids and stable isotopes, both of which integrate diet information over space and time, to determine trophic relationships in marine food webs. Fatty acid compositions of muscle from Little auk (Alle alle), Brünnich's guillemot (Uria lomvia), Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis) and Glaucous gull (Larus hyperboreus) were determined and compared with their prey species. Canonical analysis (CA) showed that fatty acid composition differed among the five seabird species. Little auk, Black-legged kittiwake and Northern fulmar had high levels of the Calanus markers 20:1n9 and 22:1, indicating that these seabirds are a part of the Calanus food chain. Brünnich's guillemot differed from the other species with much lower levels of 20:1n9 and 22:1. Brünnich's guillemot is a pursuit diver feeding on fish and amphipods deeper in the water column, below 30 m. Glaucous gull also differed from the other seabird species, with a larger variation in the fatty acid composition indicating a more diverse diet. Trophic level analysis placed Little auk at the lowest trophic level, Brünnich's guillemot and Black-legged kittiwake at intermediate levels and Glaucous gull and Northern fulmar at the highest trophic level.
Resumo:
During the RV Polarstern ANT XXIV-2 cruise to the Southern Ocean and the Weddell Sea in 2007/2008, sediment samples were taken during and after a phytoplankton bloom at 52°S 0°E. The station, located at 2960 m water depth, was sampled for the first time at the beginning of December 2007 and revisited at the end of January 2008. Fresh phytodetritus originating from the phytoplankton bloom first observed in the water column had reached the sea floor by the time of the second visit. Absolute abundances of bacteria and most major meiofauna taxa did not change between the two sampling dates. In the copepods, the second most abundant meiofauna taxon after the nematodes, the enhanced input of organic material did not lead to an observable increase of reproductive effort. However, significantly higher relative abundances of meiofauna could be observed at the sediment surface after the remains of the phytoplankton bloom reached the sea floor. Vertical shifts in meiofauna distribution between December and January may be related to changing pore-water oxygen concentration, total sediment fatty acid content, and pigment profiles measured during our study. Higher oxygen consumption after the phytoplankton bloom may have resulted from an enhanced respiratory activity of the living benthic component, as neither meiofauna nor bacteria reacted with an increase in individual numbers to the food input from the water column. Based on our results, we infer that low temperatures and ecological strategies are the underlying factors for the delayed response of benthic deep-sea copepods, in terms of egg and larval production, to the modified environmental situation.
Resumo:
Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.
Resumo:
During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0-37.0 mm long, 16.2-120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7-17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4-1.7 ml O2/day (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 µg and 49.3 µg N/day (mean: 30.7 µg, SD: 15.2 µg). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8-16.6 ml O2/day/g DM (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords
Resumo:
Silicon isotopic signatures (d30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). d30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the d30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW d30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the d30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of d30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si/m**2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si/m**2, respectively.