285 resultados para Hydrography and fish disrtibution
em Publishing Network for Geoscientific
Resumo:
This archive consists of the hydrographic data collected on Cruise 82-002 of C.S.S. Hudson, April 11 to May 2, 1982. 78 stations were occupied on a line running near 48°N from the mouth of the English Channel to the Grand Banks of Newfoundland. Pressure, temperature and salinity were measured by a Guildline digital CTP system. Salinity, dissolved oxygen, silicate, nitrate and phosphate were measured from water samples collected on the CTP upcasts. CTP and discrete bottle data and associated derived parameters are tabulated at standard levels. This is the digital version of the printed report (of 1989, see further details), published in 2006 with the information system Pangaea.
Resumo:
Recovery from the end-Permian mass extinction is frequently described as delayed, with complex ecological communities typically not found in the fossil record until the Middle Triassic epoch. However, the taxonomic diversity of a number of marine groups, ranging from ammonoids to benthic foraminifera, peaked rapidly in the Early Triassic. These variations in biodiversity occur amidst pronounced excursions in the carbon isotope record, which are compatible with episodes of massive CO2 outgassing from the Siberian Large Igneous Province. Here we present a high-resolution Early Triassic temperature record based on the oxygen isotope composition of pristine apatite from fossil conodonts. Our reconstruction shows that the beginning of the Smithian substage of the Early Triassic was marked by a cooler climate, followed by an interval of warmth lasting until the Spathian substage boundary. Cooler conditions resumed in the Spathian. We find the greatest increases in taxonomic diversity during the cooler phases of the early Smithian and early Spathian. In contrast, a period of extreme warmth in the middle and late Smithian was associated with floral ecological change and high faunal taxonomic turnover in the ocean. We suggest that climate upheaval and carbon-cycle perturbations due to volcanic outgassing were important drivers of Early Triassic biotic recovery.