12 resultados para Hydraulic diffusivity

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive continental shelves surrounding the Antarctic continent. However, the polynyas of the Amundsen Sea harbor the highest concentrations of phytoplankton anywhere in Antarctica. Here we present data showing the likely sources of Fe that enable such a productive and long lasting phytoplankton bloom. Circumpolar Deep Water (CDW) flows over the bottom of the shelf into the Pine Island Bay where DFe and TDFe were observed to increase from 0.2 to 0.4 nM DFe and from 0.3-4.0 to 7-14 nM TDFe, respectively. At the southern end of Pine Island Bay, the CDW upwelled under the Pine Island Glacier, bringing nutrients (including Fe) to the surface and melting the base of the glacier. Concentrations of DFe in waters near the Pine Island Glacier and the more westward lying Crosson, Dotson, and Getz Ice Shelves varied between 0.40 and 1.31 nM, depending on the relative magnitude of upwelling, turbulent mixing, and melting. These values represent maximum concentrations since associated ligands (which increase the solubility of Fe in seawater) were saturated with Fe (Thuroczy et al., 2012, doi:10.1016/j.dsr2.2012.03.009). The TDFe concentrations were very high compared to what previously has been measured in the Southern Ocean, varying between 3 and 106 nM. In the Pine Island Polynya, macronutrients and DFe were consumed by the phytoplankton bloom and concentrations were very low. We calculate that atmospheric dust contributed < 1% of the Fe necessary to sustain the phytoplankton bloom, while vertical turbulent eddy diffusion from the sediment, sea ice melt, and upwelling contributed 1.0-3.8%, 0.7-2.9%, and 0.4-1.7%, respectively. The largest source was Fe input from the PIG, which could satisfy the total Fe demand by the phytoplankton bloom by lateral advection of Fe over a range of 150 km from the glacier. The role of TDFe as a phytoplankton nutrient remains unclear, perhaps representing an important indirect Fe source via dissolution and complexation by dissolved organic ligands (Gerringa et al., 2000, doi:10.1016/S0304-4203(99)00092-4; Borer et al., 2005, doi:10.1016/j.marchem.2004.08.006).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50 = 55 µm) and sand (D50 = 300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) "the layering experiment": in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2 - 3 mm; 0.5 - 3.7 wt %, dry weight in a layer 10 cm deep); and (2) "the mixing experiment" where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07 - 0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.