1 resultado para Hybrid Zone

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jinshajiang suture zone, located in the eastern part of the Tethyan tectonic domain, is noticeable for a large-scale distribution of Late Jurassic to Triassic granitoids. These granitoids were genetically related to the evolution of the Paleo-Tethys Ocean. The Beiwu, Linong and Lunong granitoids occur in the middle zone of the Jinshajiang Suture Zone, and possess similar geochemical features, indicating they share a common magma source. SIMS zircon U-Pb dating reveals the Beiwu, Linong and Lunong granitic intrusions were emplaced at 233.9±1.4 Ma (2 sigma), 233.1 ±1.4 Ma (2 sigma) and 231.0±1.6 Ma (2 sigma), respectively. All of these granitoids are enriched in abundances of Si (SiO2 =65.2-73.5 wt.%), and large-ion-lithophile-elements (LILEs), but depleted in high-field-strength-elements contents (HFSEs, e.g., Nb, Ta, Ti). In addition, they have low P2O5 contents (0.06-0.11 wt.%), A/CNK values ([molecular Al2O3/(CaO+Na2O+K2O)], mostly<1.1) and 10000Ga/Al ratios (1.7-2.2), consistent with the characteristics of I-type granites. In terms of isotopic compositions, these granitoids have high initial 87Sr/86Sr ratios (0.7078-0.7148), Pb isotopic compositions [(206Pb/204Pb)t=18.213-18.598, (207Pb/204Pb)t=15.637-15.730 and (208Pb/204Pb)t=38.323-38.791], zircon d18O values (7. per mil-9.3 per mil) and negative eNd(t) values (-5.1 to -6.7), suggesting they were predominantly derived from the continental crust. Their Nb/Ta ratios (average value=8.6) are consistent with those of the lower continental crust (LCC). However, variable ?Hf(t) values (-8.6 to +2.8) and the occurrences of mafic microgranular enclaves (MMEs) suggest that mantle-derived melts and lower crustal magmas were involved in the generation of these granitoids. Moreover, the high Pb isotopic ratios and elevated zircon d18O values of these rocks indicate a significant contribution of the upper crustal composition. We propose a model in which the Beiwu, Linong and Lunong granitoids were generated under a late collisional or post-collisional setting. It is possible that this collision was completed before Late Triassic. Decompression induced mantle-derived magmas underplated and provided the heat for the anatexis of the crust. Hybrid melts including mantle-derived and the lower crustal magmas were then generated. The hybrid melts thereafter ascended to a shallow depth and resulted in some degree of sedimentary rocks assimilation. Such three-component mixing magmas source and subsequent fractional crystallization could be responsible for the formation of the Beiwu, Linong and Lunong granitoids.