4 resultados para Hospital Provision, Poor Law Infirmaries, Entitlement, Irish Free State, Inter-war Healthcare
em Publishing Network for Geoscientific
Resumo:
This work considers results of a study of Holocene cover sediments in Iceland. They are largely composed of wind-transported palagonitized hyaloclastite particles and coeval horizons of acid and basic tephras. It is established that polyciclic aromatic hydrocarbons (PAH) are released from basaltic glass in natural environments only in case of intense physicochemical alteration and destruction of its structure. This process does not influence PAH composition and their quantitative proportions. No new PAH formed during several thousands of years in Holocene section. Hydrocarbons are transferred from fixed state in basaltic glass into free state in palagonites practically without any changes. PAH were mainly redeposited by winds, derived together with palagonite from weathered hyaloclastites, and precipitated from atmosphere with tephra during eruptions.
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
Panktonic foraminiferal tests of the spinose species Orbulina universa, of the non-spinose Globorotalia tumida-menardii complex, and of a mixed species assemblage (grain size fraction 200-400 µm) were isolated from Sierra Leone Rise core GIK13519-2 and analyzed for free, total, and bound (by difference) amino acids to study the isoleucine epimerization mechanism in fossil foraminiferal tests and to define empirical calibration curves for dating deep-sea sediments over the past 900,000 years. Total isoleucine epimerization curves typically separate into three "linear" segments of decreasing apparents rates with increasing time and exhibit a pronounced "species effect". The degree of epimerization attained at time is considerably lower in O. universa than in G. tumida-menardii while the mixed species results scatter between the limits delineated by the two monospecific curves. Total allo/iso ratios are closely related to the proportion of free to total isoleucine accumulating in the tests indicating that the rate of hydrolysis of matrix proteins and peptides controls the overall epimerization reaction. The results are consistent with experimental evidenve where upon isoleucine epimerizes at a rapid rate in terminal positions but at slow rates in interior positions as well as in the free state. Notwithstanding free isoleucine exhibits the highest degree of epimerized terminal isoleucine. Species-specific hydrolysis and epimerization rates are maintained until about 50 % of bound isoleucine have been hydrolyzed to the free state corresponding to a total allo/iso ratio of about 0.5. Remaining peptide units appear to be more resistent against hydrolysis and separate species then show the same apparent epimerization rate dominantly controlled by the slow conversion rate in the free state until equilibrium is achieved in Miocene samples under deep-ocean temperature conditions. The degree of epimerization attained at comparable time in separate species will, however, remain different due to different initial rates of hydrolysis.