11 resultados para Hobsbawm, E. J. (Eric J.), 1917-2012 -- Interviews

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

delta11B results and deduced pH, pCO2 and omega values obtained for a tropical coral specimen Porites collected in 1998 at Yasawa (16°48'S- 177°27'E) on the western side of the Fiji archipelago, location in the north western part of the Pacific Warm Pool. Such Porites specimen grew during the XXth century (1898-1998). Boron isotopes results allowed the reconstruction of surface ocean acidification in the vincinity of Fiji Islands with strong interdecadal influence of the ENSO at regional scale. pHT calculation parameters (Hönisch et al., 2007): a=0 PER MIL; alpha=0.9804; delta11B=39.5 PER MIL; salinity=35.02; pKB from Dickson (1990). pCO2 and omega calculation parameters: TA= 2350 µM; Ca= 10.2 mM; Dickson et al.(2007); Mucci 1983.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

d11B and trace results obtained for a deep sea coral specimen Madrepora oculata collected from the Norwegian Sea (67°N, 9°E, 340 m) during the RV Polarstern ARK/II/Ia cruise (2007). Such coral specimen grew during the last four decades (1968-2007) and geochemical results highligh a seawater pH decrease with an order of magnitude in good agreement with an ocean acidification rate today known. This pH record is strongly impacted by inter-decadal change of ocean dynamic (NAO) and productivity. pHT calculation parameters (Hönisch et al., 2007): a=5; a=0.9804, d11B=39.5 PER MIL, Li/Mg temperature, salinity=35.1, pKB from Dickson (1990).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow-sinking particles were sampled using the Marine Snow Catcher (MSC). For a full description of the MSC and flux calculations see Riley et al. (2012). The MSC was deployed at four depths between 50 - 650 m during four visit at Stations 1 (63°3' N 11°0' W) and three visits at Station 2 (62°5' N 2°3' W) to obtain depth profiles of slow-sinking material. The MSC was further deployed at 50 m during two visits at Station 3 (60°2' N 1°0' E). A total of 33 MSC were deployed. Slow-sinking particles were analysed for particulate organic carbon (POC), particulate inorganic carbon (PIC), biogenic silica (BSi), and Chlorophyll a (total, >10 µm).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.