4 resultados para Historic sites -- Interpretive programs -- Colorado

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluffy layer was sampled repeatedly during nine expeditions between October 1996 and December 1998 at four stations situated along a S-N-transect from the Oder Estuary to the Arkona Basin. Geochemical and mineralogical analyses of the fluff show regional differences (trends) in composition, attributed to provenance and to hydrographical conditions along their transport pathways. Temporal variability is very high at the shallow water station of the estuary, and decreases towards the deeper stations in the north. In the shallow water area, intensive resuspension of the fluff due to wind-driven waves and currents leads to an average residence time of only one to two days. Near-bottom lateral transport of the fluff is the main process that transfers the fine grained material, containing both nutrients and contaminants, from the coastal zone into the deeper basins of the Baltic Sea. Seasonal effects (e.g. biogenic production in relation to trace metal variation) are observed at the Tromper Wiek station, where the residence time of the fluffy material is in the scale of seasons. Thus, the fluffy layer offers suitable material for environmental monitoring programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg/m**3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m/s. Little wind speed dependence was observed for the residential sites in Denver and Greeley.