126 resultados para Hilly gullied Loess Plateau

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chinese Loess Plateau red clay sequences display a continuous alternation of sedimentary cycles that represent recurrent climatic fluctuations from 2.58 Ma to the Miocene. Deciphering such a record can provide us with vital information on global and Asian climatic variations. Lack of fossils and failure of absolute dating methods made magnetostratigraphy a leading method to build age models for the red clay sequences. Here we test the magnetostratigraphic age model against cyclostratigraphy. For this purpose we investigate the climate cyclicity recorded in magnetic susceptibility and sedimentary grain size in a red clay section previously dated 11Myr old with magnetostratigraphy alone. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e., Milankovitch cycles are resolved in the best possible manner. Our new age model provides an age of 5.2Ma for the Shilou profile. Based on the new age model, wavelet analysis reveals the well-preserved 400 kyr and possible 100 kyr eccentricity cycles on the eastern Chinese Loess Plateau. Further, paleomonsoon evolution during 2.58-5.2Ma is reconstructed and divided into three intervals (2.58-3.6Ma, 3.6-4.5Ma, and 4.5-5.2Ma). The upper part, the youngest stage, is characterized by a relatively intensified summer monsoon, the middle stage reflects an intensification of the winter monsoon and aridification in Asia, and the earliest stage indicates that summer and winter monsoon cycles may have rapidly altered. The use of cyclostratigraphy along withmagnetostratigraphy gives us an effectivemethod of dating red clay sequences, and our results imply that many presently published age models for the red clay deposits should be perhaps re-evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic susceptibility of loess and paleosols in central China represents a proxy climate index closely related to past changes of precipitation and vegetation, and thus to summer monsoon intensity. Time series of magnetic susceptibility constructed for three loess-paleosol sequences in the southern part of the Chinese Loess Plateau document the history of summer monsoon variation during the last 130,000 yr. They correlate closely with the oxygen isotope record of stages 1 to 5 in deep-sea sediments. Soils were forming during intervals of strong summer monsoon, whereas loess units were deposited at times of reduced monsoon intensity. The Chinese loess-paleosol sequence can thus be viewed as a proxy record of Asian monsoon variability extending over the last 2.5 myr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaxun Nur Basin in arid China is tectonically influenced by the left-lateral displacements along the Gobi-Altay and Qilian Shan shear zones, resulting in a large pull-apart basin with strong subsidence in the interior. The up to 300 m thick basin fills consist of fluvio-lacustrine fine-grained deposits mainly transported by river discharges from the Tibetan Plateau. They led to a large depositional area of more than 28,000 qkm in size with presently dry terminal lakes at the outer edges. This vast area serves as a main source for loess transport to south-eastern regions of China (Loess Plateau) caused by the variable winter monsoon. Based on geochemical and sedimentological analyses of the sediment core D100 retrieved from a deep drilling in the centre of the Gaxun Nur Basin following questions have to be answered: 1. Reconstruction of the water balance and determination of hydrological cycles during interglacial and glacial periods. 2. Reconstructing variations in lacustrine environment and aeolian activities with respect to transitional phases fro, warm to cold stages (MIS 4 to 5 and older stages). 3. Establishing a sustainable chronology for the last 250 ka.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a first combined environmental magnetic and geochemical investigation of a loess-paleosol sequence (<55 ka) from the Chuanxi Plateau on the eastern margin of the Tibetan Plateau. Detailed comparison between the Ganzi section and the Luochuan section from the Chinese Loess Plateau (CLP) allows quantification of the effects of provenance and climate on pedogenic magnetic enhancement in Chinese loess. Rare earth element patterns and clay mineral compositions indicate that the Ganzi loess originates from the interior of the Tibetan Plateau. The different Ganzi and CLP loess provenances add complexity to interpretation of magnetic parameters in terms of the concentration and grain size of eolian magnetic minerals. Enhanced paleosol magnetism via pedogenic formation of ferrimagnetic nanoparticles is observed in both sections, but weaker ferrimagnetic contributions, finer superparamagnetic (SP) particles and stronger chemical weathering are found in the Ganzi loess, which indicates the action of multiple pedogenic processes that are dominated by the combined effects of mean annual precipitation (MAP), potential evapotranspiration (PET), organic matter and aluminium content. Under relatively high MAP and low PET conditions, high soil moisture favours transformation of ferrimagnetic minerals to hematite, which results in a relatively higher concentration of hematite but weaker ferrimagnetism of Ganzi loess. Initial growth of superparamagnetic (SP) particles is also documented in the incipient loess at Ganzi, which directly reflects the dynamic formation of nano-sized pedogenic ferrimagnets. A humid pedogenic environment with more organic matter and higher Al content also helps to form finer SP particles. We therefore propose that soil water balance, rather than solely rainfall, dominates the type, concentration and grain size of secondary ferrimagnetic minerals produced by pedogenesis.