5 resultados para Highway rapid passenger transport
em Publishing Network for Geoscientific
Resumo:
Euphausiids constitute major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Changes in the abiotic conditions also shape Euphausiid metabolism including aerobic and anaerobic energy production. Here we introduce a global krill respiration model which includes the effect of latitude (LAT), the day of the year of interest (DoY), and the number of daylight hours on the day of interest (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth) in the ANN model (Artificial Neural Networks). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r**2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. We also tested for seasonality the standard respiration rate of the most common species that were investigated until now in a large range of DLh and DoY with Multiple Linear Regression (MLR) or General Additive model (GAM). GAM successfully integrated DLh (r**2= 0.563) and DoY (r**2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. Neither the MLR nor the GAM approach worked for the North Pacific krill Euphausia pacifica, and MLR for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
Resumo:
Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200-300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from < 20 to ~ 870 specimen/m**2/d in the years 2000-2009, being lower during the period 2000-2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (> 50/m**2/d). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11-77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.
Resumo:
The transpolar drift is strongly enriched in 228Ra accumulated on the wide Arctic shelves with subsequent rapid offshore transport. We present new data of Polarstern expeditions to the central Arctic and to the Kara and Laptev seas. Because 226Ra activities in Pacific waters are 30% higher than in Atlantic waters, we correct 226Ra for the Pacific admixture when normalizing 228Ra with 226Ra. The use of 228Ra decay as age marker critically depends on the constancy in space and time of the source activity, a condition that has not yet adequately been tested. While 228Ra decays during transit over the central basin, ingrowth of 228Th could provide an alternative age marker. The high 228Th/228Ra activity ratio (AR = 0.8-1.0) in the central basins is incompatible with a mixing model based on horizontal eddy diffusion. An advective model predicts that 228Th grows to an equilibrium AR, the value of which depends on the scavenging regime. The low AR over the Lomonosov Ridge (AR = 0.5) can be due to either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging. Suspended particulate matter load (derived from beam transmission and particulate 234Th) and total 234Th depletion data show that scavenging, although extremely low in the central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 years more likely. The combined data of 228Ra decay and 228Th ingrowth confirm the existence of a recirculating gyre in the surface water of the eastern Eurasian Basin with a river water residence time of at least 3 years.
Resumo:
We studied a high-resolution multiproxy data set, including magnetic susceptibility (MS), CaCO3 content, and stable isotopes (d18O and d13C), from the stratigraphic interval covering the uppermost Maastrichtian and the lower Danian, represented by the pelagic limestones of the Scaglia Rossa Formation continuously exposed in the classic sections of the Bottaccione Gorge and the Contessa Highway near Gubbio, Italy. Variations in all the proxy series are periodic and reflect astronomically forced climate changes (i.e., Milankovitch cycles). In particular, the MS proxy reflects variations in the terrigenous dust input in this pelagic, deep-marine environment. We speculate that the dust is mainly eolian in origin and that the availability and transport of dust are influenced by variations in the vegetation cover on the Maastrichtian-Paleocene African or Asian zone, which were respectively located at tropical to subtropical latitudes to the south or far to the east of the western Tethyan Umbria-Marche Basin, and were characterized by monsoonal circulation. The dynamics of monsoonal circulation are known to be strongly dependent on precession-driven and obliquity-driven changes in insolation. We propose that a threshold mechanism in the vegetation coverage may explain eccentricity-related periodicities in the terrigenous eolian dust input. Other mechanisms, both oceanic and terrestrial, that depend on the precession amplitude modulated by eccentricity, can be evoked together with the variation of dust influx in the western Tethys to explain the detected eccentricity periodicity in the d13C record. Our interpretations of the d18O and MS records suggest a warming event ~400 k.y. prior to the Cretaceous-Paleogene (K-Pg) boundary, and a period of climatic and environmental instability in the earliest Danian. Based on these multiproxy phase relationships, we propose an astronomical tuning for these sections; this leads us to an estimate of the timing and duration of several late Maastrichtian and Danian biostratigraphic and magnetostratigraphic events.