8 resultados para Herbicide runoff
em Publishing Network for Geoscientific
Resumo:
We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.
Resumo:
The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950 - December 2015) on a 0.5° x 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first collect an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 11) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2014) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.