4 resultados para Hedge and Offer

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this Initial Report of the Deep Sea Drilling Project, detailed studies of Sites 533 (gas hydrates) on the Blake Outer Ridge and 534 (oldest ocean history) in the Blake-Bahama Basin have provided answers to many geological and geophysical questions posed over the decade that deep drilling has been undertaken in this part of the western North Atlantic. The history of drilling and a historical review of key scientific accomplishments have been presented in the Introduction (Gradstein and Sheridan, this volume). In this final chapter we review highlights of new geological, geophysical and paleoceanographic interpretations presented in this volume, and offer a critical review of this information. We conclude with a listing of some outstanding problems and recommendations for future research, including data collection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the planktonic foraminifer biostratigraphy of the sites drilled during Ocean Drilling Program Leg 124 in the Celebes and Sulu Seas. It discusses preservation of foraminifers in pelagic sediments and in calcareous turbidites. In the Celebes Sea, pelagic carbonates are only found in the Eocene and Oligocene at Site 770. The faunas are poorly preserved due to severe dissolution and offer little biostratigraphic detail. In the Sulu Sea, pelagic carbonates are found in the upper Pliocene and Pleistocene at Sites 768 and 769 and throughout the recovered sequence at the shallower Site 771. The foraminifer faunas from these sediments allow for recognition of most standard zones. Variations in preservation of pelagic foraminifer faunas with time are due to changes in the depth of the lysocline. Shifts to improved preservation at Sites 768 and 769 are synchronous in the upper Pliocene/Pleistocene and may be related to global sea-level cycles. Planktonic foraminifers are also abundant in calcareous turbidites, which were deposited in both basins from the late Miocene onward. However, the turbidites are fine-grained, and biostratigraphic marker species are absent as a result of size-sorting during transport. In the Celebes Sea, shelf-derived material was a major component of early-late Miocene and middle Pliocene to early Pleistocene turbidites. Changes in the composition of the turbidites may correspond to global sea-level changes. In the Sulu Sea, a shift from shelf-derived material in Pliocene calcareous turbidites to a pelagic source in the Pleistocene may be related to subsidence of the Cagayan Ridge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 202, Pleistocene calcareous nannofossils were recovered from several sites situated between 16°S and 8°N latitude. These sites are under the influence of coastal or equatorial upwelling and offer the opportunity to refine biostratigraphic patterns using alternative events from those used in "standard" zonations (Martini, 1971; Okada and Bukry, 1980, doi:10.1016/0377-8398(80)90016-X). Differences in the positions of the studied sites determine changes in sedimentation rates, which range from ~0.8 to 6 cm/k.y. (Shipboard Scientific Party, 2003, doi:10.2973/odp.proc.ir.202.101.2003). These differences are due to the proximity to the continent and to organic production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flux of sediment and organic carbon from continents to the coastal ocean is an important factor governing organic burial in coastal sediments, and these systems preserve important records of environmental and biogeochemical conditions during past global change events. Burial of organic materials in coastal systems can be promoted by chemical resilience or through protection by association with mineral surfaces, but the role and influence of these processes on organic records from ancient sediments is poorly known. We studied sediment and organic matter burial as particulate organic matter (POM) and mineral-bound organic matter (MOM) in near-shore marine sediments from the Wilson Lake core (New Jersey, USA) that span the Paleocene-Eocene thermal maximum (PETM), a climatic perturbation 55.9 Myr ago. Our results show that distinct POM and MOM fractions can be isolated from sediments. Both fractions appear to be dominated by terrestrial material, but POM consisted primarily of recently synthesized material whereas MOM included a significant fraction of pre-aged organic matter from soils or ancient sediments. Variation in organic burial through the PETM is associated with changes in inorganic nitrogen burial, clay mineralogy, and clastic grain size that we associate with enhanced continental weathering, erosion and redeposition of ancient kaolinites, and eustatic sea level variation, respectively. These results provide a new perspective on factors governing carbon burial and carbon isotope records in ancient marine margin settings and offer information on rate and phasing of late Paleocene/early Eocene Earth system changes that may constrain interpretations of the cause of the PETM climate change event.