39 resultados para Harvilahti, Lauri: The holy mountain
em Publishing Network for Geoscientific
Resumo:
There is a great similarity between pollen types which occur in the early Holocene NE Tibetan pollen spectra and those which are commonly considered to be typical for the Würm Late Glacial period in Central Europe and for the Würm Pleniglacial period in Southern Europe. Evidently, this similarity is due to a remarkable general conformity of plant taxa growing in cold-arid regions of the northern hemisphere. The improvement of the climate and the retreat of the glaciers that commenced at the end of the Würm period had already terminated definitely before 9500 BP. In addition, the climatic situation as well as the vegetation belts must have remained rather constant during the following 3000 yr, i.e. through most parts of the climatic optimum of the Holocene.
Resumo:
Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.
Resumo:
Several bog manganese deposits were discovered in the Riding Mountain area in Manitoba during the spring and summer of 1940. A study was made of the known deposits to determine the grade of the occurrences, a possible source of the manganese oxides in the bog deposits and the possibilities of locating other manganese occurrences. Samples of the bog manganese, of spring waters from which the manganese oxides have apparently been precipitated, of the Odanah shale in which the deposits occur, and of "ironstone" nodules found in the Odanah and Riding Mountain shales were gathered in the field and later analyzed. In addition to chemical analyses of the above-mentioned samples, several polished sections of the manganese oxides were prepared and studied under the microscope, thin-sections of nodules were examined, and spectrographic analyses of both nodules and bog manganese were made. ...
Resumo:
It was found out that the lower parts of slopes of the Untersee mountain valley (East Antarctica) were locally covered with lithificates (both carbonate-free and carbonate-poor). They occur in three modes: crusts, films, and impregnates. All of them cover Late Pleistocene moraine material and consist of mixture of lacustrine sedimentary material and filling material of moraines. A mechanism of their genesis is offered.
Resumo:
The scope of this PhD thesis was the hydrogeological conceptualisation of the Upper Ouémé river catchment in Benin. The study area exceeds 14,500 km**2 and is underlain by a crystalline basement. At this setting the typical sequence of aquifers - a regolith aquifer at the top and a fractured bedrock aquifer at the bottom - is encountered, which is found in basement areas all over Africa and elsewhere in the world. The chosen regional approach revealed important information about the hydrochemistry and hydrogeology of this catchment. Based on the regional conceptual model a numerical groundwater flow model was designed. The numerical model was used to estimate the impact of climate change on the regional groundwater resources. This study was realised within the framework of the German interdisciplinary research project IMPETUS (English translation: "Integrated approach to the efficient management of scarce water resources in West Africa"), which is jointly managed by the German universities of Bonn and Cologne. Since the year 2000 the Upper Ouémé catchment was the principal target for investigations into the relevant processes of the regional water cycle. A first study from 2000 to 2003 (Fass, 2004, http://nbn-resolving.de/urn:nbn:de:hbz:5n-03849) focused on the hydrogeology of a small local catchment (~30 km**2). In the course of this thesis five field campaigns were underdone from the year 2004 to 2006. In the beginning of 2004 a groundwater monitoring net was installed based on 12 automatic data loggers. Manual piezometric measurements and the sampling of groundwater and surface water were realised for each campaign throughout the whole study area. Water samples were analysed for major ions, for a choice of heavy metals and for their composition by deuterium, oxygen-18 and tritium. The numerical model was performed with FEFLOW. The hydraulic and hydrochemical characteristics were described for the regolith aquifer and the bedrock aquifer. The regolith aquifer plays the role of the groundwater stock with low conductivity while the fractures of the bedrock may conduct water relatively fast towards extraction points. Flow in fractures of the bedrock depends on the connectivity of the fracture network which might be of local to subregional importance. Stable isotopes in combination with hydrochemistry proved that recharge occurs on catchment scale and exclusively by precipitation. Influx of groundwater from distant areas along dominant structures like the Kandi fault or from the Atacora mountain chain is excluded. The analysis of tritium in groundwater from different depths revealed the interesting fact of the strongly rising groundwater ages. Bedrock groundwater may possibly be much older than 50 years. Equilibrium phases of the silicate weathering products kaolinite and montmorillonite showed that the deeper part of the regolith aquifer and the bedrock aquifer feature either stagnant or less mobile groundwater while the shallow aquifer level is influenced by seasonal groundwater table fluctuations. The hydrochemical data characterised this zone by the progressive change of the hydrochemical facies of recently infiltrated rainwater on its flow path into deeper parts of the aquifers. Surprisingly it was found out that seasonal influences on groundwater hydrochemistry are minor, mainly because they affect only the groundwater levels close to the surface. The transfer of the hydrogeological features of the Upper Ouémé catchment into a regional numerical model demanded a strong simplification. Groundwater tables are a reprint of the general surface morphology. Pumping or other types of groundwater extraction would have only very local impact on the available groundwater resources. It was possible to integrate IMPETUS scenario data into the groundwater model. As a result it was shown that the impact of climate change on the groundwater resources until the year 2025 under the given conditions will be negligible due to the little share of precipitation needed for recharge and the low water needs for domestic use. Reason for concern is the groundwater quality on water points in the vicinity of settlements because of contamination by human activities as shown for the village of Dogué. Nitrate concentrations achieved in many places already alerting levels. Health risks from fluoride or heavy metals were excluded for the Upper Ouémé area.
Resumo:
Detailed paleomagnetic investigations are reported for 283 specimens, sampled from three closely spaced Ocean Drilling Program Leg 135 cores from the Lau Basin. These specimens cover three rather similar records of the reversed Cobb Mountain short polarity event, having an age of about 1.12 m.y. On the basis of a very detailed subsampling every 0.6 cm, we found that the transition times for the Cobb Mountain geomagnetic polarity event, as seen in the three Lau Basin sediment records, appear to have been as short as 0.6-1.0 k.y., although the duration of the normal-polarity event itself lasted only about 17 ± 4 k.y. The older (R to N) transition as well as the younger (N to R) transition show virtual geomagnetic paths roughly along the Americas, but shifted some 30° ± 10° to the east. These paths conflict with Cobb Mountain transition paths recorded in sediments from the Labrador Sea and the North Atlantic, but they are in fair accordance with sediment records from the Celebes and Sulu seas when corrected for differences in site longitude, suggesting that the transitional fields are dominated by nonaxial, high-order spherical harmonics.
Resumo:
A third glacier inventory (GI3) is presented for the province of Salzburg where 173 glaciers are located in the seven mountain ranges: Ankogel (47°4'N, 13°14'E), Glockner, Granatspitz, Sonnblick (Goldberg), Hochkönig, Venediger and Zillertal (47°8'N, 12°7'E). The basis for the new GI3 are orthophotos of 2007 and 2009 and the digital elevation model (DEM) of the southern part of Salzburg. On the basis of former inventories, area- and volume changes have been calculated. The biggest relative loss of glacier area per mountain range was found in the Ankogel range and on Hochkönig as a result of the disrupted structure of their small and thin glaciers. In terms of absolute values, the largest changes took place in the Glockner- and Venediger range with an area loss of -10.1 km**2 and -9.7 km**2 during the period between GI1 (1969) and GI3 (2007/2009), respectively. Volume changes have been calculated for nearly half of the glacier area in Salzburg, where DEMs were available. The Glockner, Granatspitz and Sonnblick mountain ranges showed a volume loss of -0.481 km**3 which corresponds to a mean thickness change of -10.5 m. An extrapolation of these changes to all of the 173 glaciers in Salzburg results in a loss of about 1.04 km**3 between GI1 and GI3 and 0.44 km**3 between GI2 and GI3. Overall annual changes in the province of Salzburg between GI2 and GI3 were higher than between GI1 and GI2 and show likewise changes such as those of Tyrol.
Resumo:
Summary: The stratigraphy of the Shackleton Range established by Stephenson (1966) and Clarkson (1972) was revised by results of the German Expedition GEISHA 1987/88. The "Turnpike Bluff Group" does not form a stratigraphic unit. The stratigraphic correlation of its formations is still a matter of discussion. The following four formations are presumed to belong to different units: The Stephenson Bastion Formation and Wyeth Heights Formation are probably of Late Precambrian age. The Late Precambrian Watts Needle Formation, which lies unconformably on the Read Group, is an independant unit which has to be separated from the "Turnpike Bluff Group". The Mount Wegener Formation has been thrusted over the Watts Needle Formation. Early Cambrian fossils (Oldhamia sp., Epiphyton sp., Botomaella (?) sp. and echinoderms) were found in the Mt. Wegener Formation in the Read Mountains. The Middle Cambrian trilobite shales on Mount Provender, which form the Haskard Highlands Formation, are possibly in faulted contact with the basement complex (Pioneers and Stratton Groups). They are overlain by the Blaiklock Glacier Group, for which an Ordovician age is indicated by trilobite tracks and trails, low inclination of the paleomagnetic field and the similarity to the basal units of the Table Mountain Quartzite in South Africa. The Watts Needle Formation represents epicontinental shelf sediments, the Mount Wegener Formation was deposited in a (continental) back-arc environment, and the Blaiklock Glacier Group is a typical molasse sediment of the Ross Orogen.
Resumo:
Joint interpretation of magnetotelluric and geomagnetic depth sounding data in the western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques. 3d-forward-modelling reveals on the one hand interrupted dipping crustal conductors with maximum conductance of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central western Alps. Graphite networks arising from Paleozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. In conclusion, electromagnetic results can be attributed to the geological, tectonic and palaeogeographical background. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its palaeographic belonging to the Iberian Peninsula.
Resumo:
Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.
Resumo:
Despite its extreme aridity the Badain Jaran Desert is rich in groundwater. In the southeastern part of this desert it is characterized by coexistence of high megadunes and a great number of lakes. Deuterium and oxygen 18 isotope compositions as well as hydrochemistry of groundwater, lake water, soil water and river water were investigated in detail to gain an insight into their relationships and the origin of the groundwater. The results show that the groundwater and the lake water are genetically related, but unrelated to local precipitation and the leakage of Heine River at the northern slope of the Qilian mountain. dD and d18O values of deep soil water (deeper than 40 cm) and groundwater plot on the same evaporation line E11, which shows that they have the same recharge source. The point of intersection between E11 and LMWL suggests that the groundwater originates from a water resource, which has a weighted mean value that is lighter by some 6 per mil d18O than local precipitation in Badain Jaran Desert. 3H data of water samples show that the groundwater in the Badain Jaran Desert originates from water recharged after the nuclear test. The deep fault zone underground maybe a water circulation channel based on helium analysis of groundwater. The result has guiding significance to rational exploitation and utilization of the local groundwater.