138 resultados para Half-bound

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments from the Portuguese shelf are influenced by environmental changes in the surrounding continental and marine environment. These are largely controlled by the North Atlantic Oscillation, but additional impacts may arise from episodic tsunamis. In order to investigate these influences, a high resolution multi-proxy study has been carried out on a 5.4 m long gravity core and five box cores from the Tagus prodelta on the western Portuguese margin, incorporating geochemical (Corg/Ntotal ratios, d13Corg, d15N, d18O, Corg and CaCO3 content) and physical sediment properties (magnetic susceptibility, grain-size). Subsurface data of the five box cores indicate no major effect of early postdepositional alteration. Surface data show a higher fraction of terrigenous organic material close to the river mouth and in the southern prodelta. Gravity core GeoB 8903 covers the last 3.2 kyrs with a temporal resolution of at least 0.1 cm/yr. Very high sedimentation rates between 69 and 140 cm core depth indicate a possible disturbance of the record by the AD1755 tsunami, although no evidence for a disturbance is observed in the data. Sea surface temperature and salinity on the prodelta, the local budget of marine NO3- as well as the provenance of organic matter remained virtually constant during the past 3.2 kyrs. A positive correlation between magnetic susceptibility (MS) and North Atlantic Oscillation (NAO) is evident for the past 250 years, coinciding with a negative correlation between mean grain-size and NAO. This is assigned to a constant riverine supply of fine material with high MS, which is diluted by the riverine input of a coarser, low-MS component during NAO negative, high-precipitation phases. End-member modelling of the lithic grain-size spectrum supports this, revealing a third, coarse lithic component. The high abundance of this coarse end-member prior to 2 kyr BP is interpreted as the result of stronger bottom currents, concentrating the coarse sediment fraction by winnowing. As continental climate was more arid prior to 2 kyr BP (Subboreal), the coarse end-member may also consist of dust from local sources. A decrease in grain-size and CaCO3 content after 2 kyr BP is interpreted as a result of decreasing wind strength. The onset of a fining trend and a further decrease in CaCO3 around AD900 occurs simultaneous to climatic variations, reconstructed from eastern North Atlantic records. A strong increase in MS between AD1400 and AD1500 indicates higher lithic terrigenous input, caused by deforestation in the hinterland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drift of 52 icebergs tagged with GPS buoys in the Weddell Sea since 1999 has been investigated with respect to prevalent drift tracks, sea ice/iceberg interaction, and freshwater fluxes. Buoys were deployed on small- to medium-sized icebergs (edge lengths ? 5 km) in the southwestern and eastern Weddell Sea. The basin-scale iceberg drift of this size class was established. In the western Weddell Sea, icebergs followed a northward course with little deviation and mean daily drift rates up to 9.5 ± 7.3 km/d. To the west of 40°W the drift of iceberg and sea ice was coherent. In the highly consolidated perennial sea ice cover of 95% the sea ice exerted a steering influence on the icebergs and was thus responsible for the coherence of the drift tracks. The northward drift of buoys to the east of 40°W was interrupted by large deviations due to the passage of low-pressure systems. Mean daily drift rates in this area were 11.5 ± 7.2 km/d. A lower threshold of 86% sea ice concentration for coherent sea ice/iceberg movement was determined by examining the sea ice concentration derived from Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) satellite data. The length scale of coherent movement was estimated to be at least 200 km, about half the value found for the Arctic Ocean but twice as large as previously suggested. The freshwater fluxes estimated from three iceberg export scenarios deduced from the iceberg drift pattern were highly variable. Assuming a transit time in the Weddell Sea of 1 year, the iceberg meltwater input of 31 Gt which is about a third of the basal meltwater input from the Filchner Ronne Ice Shelf but spreads across the entire Weddell Sea. Iceberg meltwater export of 14.2 × 103 m3 s?1, if all icebergs are exported, is in the lower range of freshwater export by sea ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface samples and nine cores from the western Baltic Sea and marginal water bodies were investigated for clay mineral composition. The clay mineral assemblages of recent sediments are rather homogeneous. Variations result mainly from the erosion of different glacial source deposits. High percentages of illite and low kaolinite/chlorite and quartz/feldspar ratios are characteristic for this glacial source. Advection of kaolinite-rich suspensions from the North Sea is believed to account for higher kaolinite/chlorite ratios in the Mecklenburg Bight. A contribution of the rivers Trave and Oder to the western Baltic Sea is indicated by increased smectite values in marginal water bodies. They correspond to increased kaolinite/chlorite and quartz/feldspar ratios. In the main basins the river signal is diluted beyond recognition. Cores from the Arkona, Bornholm and Gotland Basins penetrate through post-Littorina muds and sediments of the Ancylus Lake/Yoldia Sea into Late Glacial sediments of the Baltic Ice Lake. Clay mineral assemblages are characterized by an increase in kaolinite/chlorite ratios from Late Glacial to Holocene sediments, with a distinct shift at each facies change. This allows the distinction and core to core correlation of main lithological units with kaolinite/chlorite ratios. Kaolinite enrichment of Holocene muds corresponds to a brackish-marine facies and may reflect influx of kaolinite-rich suspensions from the North Sea. Cores from the lagoon of the Oderhaff show fluctuations in the contributions of the two main sediment sources: river suspension and glacial deposits during the Late Glacial and Postglacial sequence. Lacustrine sediments, which were deposited prior to 5500 years B.P. are characterized by smectite, kaolinite and quartz from the drainage area of the Oder river. Erosion of coastal and offshore glacial boulder clays with the Littorina transgression supplied a marine component rich in illite, chlorite and feldspars to the brackish muds of the Oderhaff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A third glacier inventory (GI3) is presented for the province of Salzburg where 173 glaciers are located in the seven mountain ranges: Ankogel (47°4'N, 13°14'E), Glockner, Granatspitz, Sonnblick (Goldberg), Hochkönig, Venediger and Zillertal (47°8'N, 12°7'E). The basis for the new GI3 are orthophotos of 2007 and 2009 and the digital elevation model (DEM) of the southern part of Salzburg. On the basis of former inventories, area- and volume changes have been calculated. The biggest relative loss of glacier area per mountain range was found in the Ankogel range and on Hochkönig as a result of the disrupted structure of their small and thin glaciers. In terms of absolute values, the largest changes took place in the Glockner- and Venediger range with an area loss of -10.1 km**2 and -9.7 km**2 during the period between GI1 (1969) and GI3 (2007/2009), respectively. Volume changes have been calculated for nearly half of the glacier area in Salzburg, where DEMs were available. The Glockner, Granatspitz and Sonnblick mountain ranges showed a volume loss of -0.481 km**3 which corresponds to a mean thickness change of -10.5 m. An extrapolation of these changes to all of the 173 glaciers in Salzburg results in a loss of about 1.04 km**3 between GI1 and GI3 and 0.44 km**3 between GI2 and GI3. Overall annual changes in the province of Salzburg between GI2 and GI3 were higher than between GI1 and GI2 and show likewise changes such as those of Tyrol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fact that the natural remanent magnetization (NRM) intensity of mid-oceanic-ridge basalt (MORB) samples shows systematic variations as a function of age has long been recognized: maximum as well as average intensities are generally high for very young samples, falling off rather rapidly to less than half the recent values in samples between 10 and 30 Ma, whereupon they slowly rise in the early Tertiary and Cretaceous to values that approach those of the very young samples. NRM intensities measured in this study follow the same trends as those observed in previous publications. In this study, we take a statistical approach and examine whether this pattern can be explained by variations in one or more of all previously proposed mechanisms: chemical composition of the magnetic minerals, abundance of these magnetization carriers, vectorial superposition of parallel or antiparallel components of magnetization, magnetic grain or domain size patterns, low-temperature oxidation to titanomaghemite, or geomagnetic field behavior. We find that the samples do not show any compositional, petrological, rock-magnetic, or paleomagnetic patterns that can explain the trends. Geomagnetic field intensity is the only effect that cannot be directly tested on the same samples, but it shows a similar pattern as our measured NRM intensities. We therefore conclude that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cenozoic planktonic foraminiferal biostratigraphy at DSDP-IPOD Leg 80 sites documents the existence of regionwide stratigraphic gaps in the Paleocene and middle Miocene. Episodes of carbonate dissolution also occurred during the Paleocene at several sites, particularly at Site 549, where destruction of foraminiferal tests may obscure evidence of an unconformity. The middle Miocene hiatus is apparent at each site where Neogene sediments were continuously cored. Upper Miocene sediments at Site 550 (the only abyssal site) are characterized by moderate to extensive dissolution of planktonic foraminifers, but they contain abundant specimens of Bolboforma that mark this stratigraphic interval (von Daniels and Spiegler, 1974, doi:10.1007/BF02986990; Roegl, 1976, doi:10.2973/dsdp.proc.35.133.1976; Murray, 1979, doi:10.2973/dsdp.proc.48.116.1979; Müller et al., 1985, doi:10.2973/dsdp.proc.80.117.1985). Although foraminiferal evidence is not conclusive, nannofossils indicate a widespread Oligocene unconformity (Müller, 1985). Several oceanographic factors, not just simple sea-level change, probably interacted to produce these regional unconformities. There are also dramatic differences in the Cenozoic sedimentary record among Leg 80 sites, indicating that each has had a distinct geologic history. The thickness of the Cenozoic section varies from 100 m at Site 551 to 471 m at Site 548. The thickness of individual chronostratigraphic units also varies, as do the number and stratigraphic position of unconformities other than those mentioned. Differences in the stratigraphic record from site to site across the continental slope result from (1) location in separate half-graben structures, (2) varying location across the developing margin, and (3) difference in position relative to the seaward edge of the enclosing half-graben. Except for turbidites, deposition at Site 550 (abyssal) was largely independent of developments on the continental slope; but it was affected by oceanographic events widespread in the North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17000 calendar years ago. During the Late Weichselian (25 000-10000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.