8 resultados para Hair dye
em Publishing Network for Geoscientific
Resumo:
To demonstrate the ability to assess long-term hypothalamic-pituitary-adrenocortical (HPA) axis activity in polar bears (Ursus maritimus), a pilot study was conducted in which cortisol concentration was analyzed in hair from 7 female (3-19 years) and 10 male (6-19 years) East Greenland polar bears sampled in 1994-2006. The hair was chosen as matrix as it is non-invasive, seasonally harmonized, and has been validated as an index of long-term changes in cortisol levels. The samples were categorized according to contamination: eight were clean (2 females, 6 males), 5 had been contaminated with bear blood (2 F, 3 M), and 4 with bear fat (3 F, 1 M). There was no significant difference in cortisol concentration between the three categories after external contamination was removed. However, contaminated hair samples should be cleaned before cortisol determination. Average hair cortisol concentration was 8.90 pg/mg (range: 5.5 to 16.4 pg/mg). There was no significant correlation between cortisol concentration and age (p = 0.81) or sampling year (p = 0.11). However, females had higher mean cortisol concentration than males (females mean: 11.0 pg/mg, males: 7.3 pg/mg; p = 0.01). The study showed that polar bear hair contains measurable amounts of cortisol and that cortisol in hair may be used in studies of long-term stress in polar bears.
Resumo:
Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (p<0.001) concentrations in historical hair samples (1892-1927; n = 8) relative to recent ones (1988-2009; n = 88). In addition, there was a linear time trend in cortisol concentration of the recent samples (p< 0.01), with an annual decrease of 2.7%. The recent hair samples were also analyzed for major bioaccumulative, persistent organic pollutants (POPs). There were no obvious POP related time trends or correlations between hair cortisol and hair POP concentrations. Thus, polar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels.
Resumo:
In this pilot study, we report on levels of persistent organohalogenated contaminants (OHCs) in hair of polar bears (Ursus maritimus) from East Greenland sampled between 1999 and 2001. To our knowledge, this is the first study on the validation of polar bear hair as a non-invasive matrix representative of concentrations and profiles in internal organs and blood plasma. Because of low sample weights (13-140 mg), only major bioaccumulative OHCs were detected above the limit of quantification: five polychlorinated biphenyl (PCB) congeners (CB 99, 138, 153, 170 and 180), one polybrominated diphenyl ether (PBDE) congener (BDE 47), oxychlordane, trans-nonachlor and ß-hexachlorocyclohexane. The PCB profile in hair was similar to that of internal tissues (i.e. adipose, liver, brain and blood), with CB 153 and 180 as the major congeners in all matrices. A gender difference was found for concentrations in hair relative to concentrations in internal tissues. Females (n = 6) were found to display negative correlations, while males (n = 5) showed positive correlations, although p-values were not found significant. These negative correlations in females may reflect seasonal OHC mobilisation from periphery adipose tissue due to, for example, lactation and fasting. The lack of significance in most correlations may be due to small sample sizes and seasonal variability of concentrations in soft tissues. Further research with larger sample weights and sizes is therefore necessary to draw more definitive conclusions on the usefulness of hair for biomonitoring OHCs in polar bears and other fur mammals.
Resumo:
Hair samples from 117 Northwest Greenland polar bears (Ursus maritimus) were taken during 1892-2008 and analyzed for total mercury (hereafter Hg). The sample represented 28 independent years and the aim of the study was to analyze for temporal Hg trends. Mercury concentrations showed yearly significant increases of 1.6-1.7% (p < 0.0001) from 1892 to 2008 and the two most recent median concentrations from 2006 and 2008 were 23- to 27-fold higher respectively than baseline level from 1300 A.D. in the same region (Nuullit). This indicates that the present (2006-2008) Northwest Greenland polar bear Hg exposure is 95.6-96.2% anthropogenic in its origin. Assuming a continued anthropogenic increase, this model estimated concentrations in 2050 and 2100 will be 40- and 92-fold the baseline concentration, respectively, which is equivalent to a 97.5 and 98.9% man-made contribution. None of the 2001-2008 concentrations of Hg in Northwest Greenland polar bear hair exceeded the general guideline values of 20-30 µg/g dry weight for terrestrial wildlife, whereas the neurochemical effect level of 5.4 µg Hg/g dry weight proposed for East Greenland polar bears was exceeded in 93.5% of the cases. These results call for detailed effect studies in main target organs such as brain, liver, kidney, and sexual organs in the Northwest Greenland polar bears.