14 resultados para HOT SPOTS

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to Wilson's (1963a, b) hypothesis, the volcanoes of the Hawaiian-Emperor Chain are formed as the Pacific lithospheric plate moves over a source of magma in the mantle. Morgan (1971, 1972) proposed that these "hot spots" resulted from "mantle plumes" that rise vertically from the core/mantle boundary and that are fixed about the deep mantle and rotating globe poles. The age of volcanoes increases with distance away from the recent "hot spot" beneath Kilauea volcano. The Hawaiian-Emperor bend indicates that the direction of motion of the Pacific plate changed about 40 m.y. ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early diagenetic dolomite beds were sampled during the Ocean Drilling Programme (ODP) Leg 201 at four reoccupied ODP Leg 112 sites on the Peru continental margin (Sites 1227/684, 1228/680, 1229/681 and 1230/685) and analysed for petrography, mineralogy, d13C, d18O and 87Sr/86Sr values. The results are compared with the chemistry, and d13C and 87Sr/86Sr values of the associated porewater. Petrographic relationships indicate that dolomite forms as a primary precipitate in porous diatom ooze and siliciclastic sediment and is not replacing the small amounts of precursor carbonate. Dolomite precipitation often pre-dates the formation of framboidal pyrite. Most dolomite layers show 87Sr/86Sr-ratios similar to the composition of Quaternary seawater and do not indicate a contribution from the hypersaline brine, which is present at a greater burial depth. Also, the d13C values of the dolomite are not in equilibrium with the d13C values of the dissolved inorganic carbon in the associated modern porewater. Both petrography and 87Sr/86Sr ratios suggest a shallow depth of dolomite formation in the uppermost sediment (<30 m below the seafloor). A significant depletion in the dissolved Mg and Ca in the porewater constrains the present site of dolomite precipitation, which co-occurs with a sharp increase in alkalinity and microbial cell concentration at the sulphate-methane interface. It has been hypothesized that microbial 'hot-spots', such as the sulphate-methane interface, may act as focused sites of dolomite precipitation. Varying d13C values from -15 per mil to +15 per mil for the dolomite are consistent with precipitation at a dynamic sulphate-methane interface, where d13C of the dissolved inorganic carbon would likewise be variable. A dynamic deep biosphere with upward and downward migration of the sulphate-methane interface can be simulated using a simple numerical diffusion model for sulphate concentration in a sedimentary sequence with variable input of organic matter. Thus, the study of dolomite layers in ancient organic carbon-rich sedimentary sequences can provide a useful window into the palaeo-dynamics of the deep biosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002-2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km**3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km**2 and 4 ± 3 km**3 (Antarctic Peninsula), 1148 ± 432 km**2 and 12 ± 5 km**3 (Iceberg A23A), 901 ± 703 km**2 and 10 ± 8 km**3 (Filchner Ice Shelf) as well as 499 ± 277 km**2 and 5 ± 2 km**3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methyl iodide (CH3I), bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1-5.4 pmol/L were equally distributed throughout the investigation area. CHBr3 of 1.0-42.4 pmol/L and CH2Br2 of 1.0-9.4 pmol/L were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report 48 analyses of rare-earth elements (REE) and 15 143Nd/144Nd and 87Sr/86Sr analyses for basalts from the eight holes drilled during Leg 82. Discrete and distinct REE patterns and 143Nd/144Nd ratios characterize the eight holes, with little variation observed downhole except in Holes 561 and 558, thus suggesting dominantly long-term temporal and large-scale spatial variations in the mantle source of these basalts beneath the Mid-Atlantic Ridge over the last 35 Ma of its spreading activity. There is a good inverse correlation between 143Nd/144Nd and (La/Sm)EF with one exception in Hole 558 (approximately 35 Ma), the latter suggesting a recent (35 Ma) light REE depletion event, perhaps caused by dynamic or fractional melting. Short-term temporal and small-scale spatial mantle source variability is also evident in Hole 561 (approximately 18 Ma), which has rapid fluctuations in REE patterns and 143Nd/144Nd ratios (suggesting rapid transfer of magma from the time of melting) and is evidence contrary to the presence of a well-mixed magma chamber at this particular site and time. The mantle source variations noted can be interpreted within two extreme models. The first model invokes a convecting mantle depleted in large ion lithophile elements (LILE) and containing lumps (or veins) of LILE-enriched material of various shapes and sizes, passively and randomly distributed throughout. A second more restrictive model considers the interaction of fixed mantle plumes and the LILE-depleted asthenosphere flowing towards a migrating Mid- Atlantic Ridge (MAR) axis. With the exception of Hole 558 and the uncertainties of reconstructions of absolute plate movements in the region, the observed variations can be explained by two hot spots; the nearly ridge-centered Azores hot spot (plume) and another hot spot located beneath the African plate that may be affecting the source of basalts currently erupting at the MAR axis at 35°N and which, in the past, would have produced the New England chain of seamounts on the North American plate and (later) the Atlantis-Great Meteor chain on the African plate. Basalts erupted south of the Hayes Fracture Zone have not been affected by either of these two hot spots over the last 35 Ma and appear to have been continuously derived from the LILE-depleted source. Subaxial flow downridge from the Azores plume appears to have started 9 Ma, on the basis of the southward converging V-shaped time-transgressive ridges branching from the Pico and Corves Island, or not earlier than 16 Ma, on the basis of the geochemical results. Variations within Hole 558 remains unexplained by the latter model, unless we hypothesize a third hot spot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we present bulk organic geochemical data from a spatial grid of surface samples from the western Barents Sea region. The results show that the distribution of organic carbon in surface sediments is predominantly controlled by input from land-derived terrigenous and in-situ produced marine organic matter. Inferred from various nitrogenous fractions and stable isotopes of bulk organic carbon we show that the spatial distribution of terrigenous organic carbon is independent of water depth, organic carbon mineralization and variable sedimentation rates. Instead, the pattern is predominantly controlled by sea ice-induced lateral transport and subsequent release in the Marginal Ice Zone (MIZ) as well as the distance to shore. Consistent with the observation of high vertical flux of particulate organic material in the MIZ, are amounts of marine organic carbon significantly enhanced in sediments below the winter ice margin. This is in accordance with modern observations suggesting that Arctic shelves with seasonal ice zones can be hot spots of vertical carbon export and thus a potential CO2 sink.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. We therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-water coral ecosystems are hot spots of biodiversity and provide habitats and refuges for several deep-sea species. However, their role in shaping the biodiversity of the surrounding open slopes is still poorly known. We investigated how meiofaunal biodiversity varies with and is related to the occurrence of deep-water living scleractinian corals and coral rubble in two deep-sea areas (the Rockall Bank, northeastern Atlantic) and the Santa Maria di Leuca (central Mediterranean). In both areas, replicated sampling on alive and dead coral areas and from the adjacent slope sediments without corals (at the same and increasing depths) allowed us to demonstrate that sediments surrounding the living corals and coral rubble were characterised by higher meiofaunal biodiversity (as number of higher taxa, and nematode species richness) than the slope sediments. Despite the soft sediments surrounding the living coral having a higher nutritional value than those not associated with corals, with the opposite seen for coral rubble, the presence of both alive and dead corals had a significant effect on nematode assemblages. Our data suggest that, due particularly to the effects on habitat heterogeneity/complexity, both living coral and coral rubble promoted higher biodiversity levels than in surrounding slope sediments. We conclude that the protection of deep-water corals can be crucial to preserve the biodiversity of surrounding open slopes, and that the protection of dead corals, a so-far almost neglected habitat in terms of biological conservation, can further contribute to the maintenance of a high deep-sea biodiversity along continental margins.