5 resultados para HIGHLY REACTIVE ORGANOLANTHANIDES
em Publishing Network for Geoscientific
Resumo:
Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nano-scale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled-up successfully from lab-scale to pilot plant-scale production, whilst maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 L bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 hours. This procedure was capable of producing up to 120 g biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 L, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kg to tonne quantities.
Resumo:
Superoxide is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2- throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design, to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied 6 stations, 2 on the West African continental shelf and 4 open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that in the surface ocean, impacted by Saharan aerosols and sediment resuspension, the main decay pathways for superoxide is via reactions with Mn(||) and organic matter.
Resumo:
Sites 677 and 678 were drilled on ODP Leg 111 to test hypotheses about the nature and pattern of hydrothermal circulation on a mid-ocean ridge flank. Together with earlier results from DSDP Site 501/504 and several heatflow and piston coring surveys covering a 100-km**2 area surrounding the three drill sites, they confirm that hydrothermal circulation persists in this 5.9-m.y.-old crust, both in basement and through the overlying sediments (Langseth et al., 1988, doi:10.2973/odp.proc.ir.111.102.1988). Profiles of sediment pore-water composition with depth at the three drill sites show both vertical and horizontal gradients. The shapes of the profiles and their variation from one site to another result from a combination of vertical and horizontal diffusion, convection, and reaction in the sediments and basement. Chemical species that are highly reactive in the siliceous-calcareous biogenic sediments include bicarbonate (alkalinity), ammonium, sulfate, manganese, calcium, strontium, lithium, silica, and possibly potassium. Reactions include bacterial sulfate reduction, mobilization of Mn2+, precipitation of CaCO3, and recrystallization of calcareous and siliceous oozes to chalk, limestone, and chert. Species with profiles more affected by reaction in basaltic basement than in the sediments include Mg, Ca, Na, K, and oxygen isotopes. Reaction in basement at 60?C and at higher temperatures has produced a highly altered basement formation water that is uniform in composition over distances of several kilometers. As inferred from the composition of the basal sediment pore water at the three sites, this uniformity extends from up flow zone to downflow zone in basement and the sediments. It exists in spite of large variations in heat flow and depth to basement, apparently as a result of homogenization by hydrothermal circulation in basement. Profiles for chlorinity, Na, Mg, and other species in the sediment pore waters confirm that Site 678, drilled on a localized heatflow high identified by Langseth et al. (1988), is a site of long-lived upwelling of warm water from basement through the sediments at velocities of 1 to 2 mm/yr. The upflow through the anomalously thin sediments is apparently localized above an uplifted fault block in basement. This site and other similar sites in the survey area give rise to lateral diffusion and possibly flow through the sediments, which produces lateral gradients in sediment pore-water composition at sites such as 501/504. The complementary pore-water profiles at the low-heatflow Site 677 2 km to the south indicate that downflow is occurring through the sediments there, at comparable rates of 1 to 2 mm/yr.
Resumo:
In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals (Ca-P) is largely restricted to where the OMZ intersects the seafloor topography, likely due to higher depositional fluxes of reactive P. Nonetheless, increased ratios of organic carbon to organic P (Corg/Porg) and to total reactive P (Corg/Preactive) in surface sediments indicate that the overall burial efficiency of P relative to Corg decreases under the low bottom water oxygen concentrations (BWO) in the OMZ. The relatively constant Fe/Al ratio in surface sediments along the depth transect suggest that corresponding changes in Fe burial are limited. Sedimentary pyrite contents are low throughout the ~25 cm sediment cores at most stations, as commonly observed in the Arabian Sea OMZ. However, pyrite is an important sink for reactive Fe at one station in the OMZ. A reactive transport model (RTM) was applied to quantitatively investigate P and Fe diagenesis at an intermediate station at the lower boundary of the OMZ (bottom water O2: ~14 µmol/L). The RTM results contrast with earlier findings in showing that Fe redox cycling can control authigenic apatite formation and P burial in Arabian Sea sediment. In addition, results suggest that a large fraction of the sedimentary Ca-P is not authigenic, but is instead deposited from the water column and buried. Dust is likely a major source of this Ca-P. Inclusion of the unreactive Ca-P pool in the Corg/P ratio leads to an overestimation of the burial efficiency of reactive P relative to Corg along the depth transect. Moreover, the unreactive Ca-P accounts for ~85% of total Ca-P burial. In general, our results reveal large differences in P and Fe chemistry between stations in the OMZ, indicating dynamic sedimentary conditions under these oxygen-depleted waters.
Resumo:
Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with nitrogen oxides contiguously. The association between Ca2+, an important proxy indicator of mineral dust and NO3-, a dominant anion in the Antarctic snow pack was analysed. A total of 41 snow cores (~ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML) in East Antarctica. Correlation statistics showed a strong association (at 99 % significance level) between NO3- and Ca2+ at the near-coastal sections of both PEL (r = 0.72) and cDML (r = 0.76) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.8) and cDML (r = 0.85). Such systematic associations between Ca2+ and NO3- is attributed to the interaction between calcic mineral dust and nitrogen oxides in the atmosphere, leading to the possible formation of calcium nitrate (Ca(NO3)2). Forward and back trajectory analyses using HYSPLIT model v. 4 revealed that Southern South America (SSA) was an important dust emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 µm, indicating that these dust particles reached the Antarctic region via long range transport from the SSA region. We propose that the association between Ca2+ and NO3- occurs during the long range transport due to the formation of Ca(NO3)2. The Ca(NO3)2 thus formed in the atmosphere undergo deposition over Antarctica under the influence of anticyclonic polar easterlies. However, influence of local dust sources from the nunataks in cDML evidently mask such association in the mountainous region. The study indicates that the input of dust-bound NO3- may contribute a significant fraction of the total NO3- deposited in Antarctic snow.