264 resultados para HIGH-RESOLUTION IMAGING

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution stratigraphic framework is presented for sapropel S5, which represents the low-mid latitude climate optimum of the previous interglacial period (Eemian). The framework is based on three sites along a transect from west to east through the eastern Mediterranean, and is further validated using a fourth site. This method allows expression of S5-based proxy records of Eemian climate variability along a standardised depth scale that offers unprecedented possibilities for assessment of spatial gradients and signal leads and lags in an interval where highresolution (radiocarbon-style) dating cannot be performed. Our lateral comparison of S5 sapropels suggests that the onset of S5 in ODP site 967C (Eratosthenes seamount) was 1-6 centuries delayed relative to the onsets in more westerly sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.