388 resultados para HG ISOTOPES

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and isotopic data for rare massive and semimassive sulfide samples cored at Site 1189 (Roman Ruins, PACMANUS) suggest their genetic relationship with sulfide chimneys at the seafloor. Sand collected from the hammer drill after commencement of Hole 1189B indicates that at least the lower section of the cased interval was occupied by material similar to the stockwork zone cored from 31 to ~100 meters below seafloor (mbsf) in this hole, but with increased content of barite, sphalerite, and lead-bearing minerals. Fractional crystallization of ascending hydrothermal fluid involving early precipitation of pyrite may explain vertical mineralogical and chemical zoning within the stockwork conduit and the high base and precious metal contents of Roman Ruins chimneys. A mineralized volcaniclastic unit cored deep in Hole 1189A possibly represents the lateral fringe of the conduit system. Lead isotope ratios in the sulfides differ slightly but significantly from those of fresh lavas from Pual Ridge, implying that at least some of the Pb within the Roman Ruins hydrothermal system derived from a deeper, more radiogenic source than the enclosing altered volcanic rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium isotope stratigraphy was used to date five discrete horizons within CRP-1. Early and late Quaternary (0.87-1.3 Ma and 0-0.67 Ma respectively) age sediments overlie a major sequence boundary at 43.15 meters below sea floor (mbsf). This hiatus is estimated to account for ~16 m.y. of missing section. Early Miocene (16.6-~20.8-25 Ma) age deposits below this boundary are in turn cut by multiple erosion surface representing hiatus is of between 0.2 and 1.2 m.y. Estimated minimum sedimentation rates range between 0.9 and 2.8 cm/k.y. in the Quaternary, and 1.5 and 6.4 cm/ky in the lower Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.