21 resultados para HABITAT STRUCTURE
em Publishing Network for Geoscientific
Resumo:
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3-5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.
Resumo:
The present study analysed the megabenthic diversity in subtidal soft bottoms and assessed the main environmental drivers of megabenthic community organisation along the Algarve coast (southern Portugal). We tested the hypothesis that megabenthic communities respond to the same environmental drivers than macrofauna. We found that similar to macrofauna, megafaunal communities were organised in relation to the depth of closure, light reaching the bottom, and the hydrodynamic conditions related with exposure within the shallower areas. The influence of the main river outflow prevailed over other drivers, but only up to 9 m depth. We found that seven different spatial units should be considered, each characterised by different indicator species. Additionally, among a total of 412 taxa collected between 4 and 50 m depth, we provide the characteristics of the 64 commonest species in terms of occurrence, frequency, distribution, abundance, bathymetric and sedimentary preferences, which constitutes most valuable information for ecosystem modelling. Megabenthic alpha diversity decreased with depth, contrary to evenness and was higher in the proximity of the river Guadiana and in highly exposed shores. We conclude that the megafauna, which is significantly quicker to collect and analyse, can provide an accurate alternative to macrofauna sampling, as their communities are shaped by the same drivers.
Resumo:
Despite the importance of tropical montane cloud forest streams, studies investigating aquatic communities in these regions are rare and knowledge on the driving factors of community structure is missing. The objectives of this study therefore were to understand how land-use influences habitat structure and macroinvertebrate communities in cloud forest streams of southern Ecuador. We evaluated these relationships in headwater streams with variable land cover, using multivariate statistics to identify relationships between key habitat variables and assemblage structure, and to resolve differences in composition among sites. Results show that shading intensity, substrate type and pH were the environmental parameters most closely related to variation in community composition observed among sites. In addition, macroinvertebrate density and partly diversity was lower in forested sites, possibly because the pH in forested streams lowered to almost 5 during spates. Standard bioindicator metrics were unable to detect the changes in assemblage structure between disturbed and forested streams. In general, our results indicate that tropical montane headwater streams are complex and heterogeneous ecosystems with low invertebrate densities. We also found that some amount of disturbance, i.e. patchy deforestation, can lead at least initially to an increase in macroinvertebrate taxa richness of these streams.
Resumo:
Snow cover has dramatic effects on the structure and functioning of Arctic ecosystems in winter. In the tundra, the subnivean space is the primary habitat of wintering small mammals and may be critical for their survival and reproduction. We have investigated the effects of snow cover and habitat features on the distributions of collared lemming (Dicrostonyx groenlandicus) and brown lemming (Lemmus trimucronatus) winter nests, as well as on their probabilities of reproduction and predation by stoats (Mustela erminea) and arctic foxes (Vulpes lagopus). We sampled 193 lemming winter nests and measured habitat features at all of these nests and at random sites at two spatial scales. We also monitored overwinter ground temperature at a subsample of nest and random sites. Our results demonstrate that nests were primarily located in areas with high micro-topography heterogeneity, steep slopes, deep snow cover providing thermal protection (reduced daily temperature fluctuations) and a high abundance of mosses. The probability of reproduction increased in collared lemming nests at low elevation and in brown lemming nests with high availability of some graminoid species. The probability of predation by stoats was density dependent and was higher in nests used by collared lemmings. Snow cover did not affect the probability of predation of lemming nests by stoats, but deep snow cover limited predation attempts by arctic foxes. We conclude that snow cover plays a key role in the spatial structure of wintering lemming populations and potentially in their population dynamics in the Arctic.