63 resultados para Gyre system

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity increase in the subtropical gyre system may have pre-conditioned the North Atlantic Ocean for a rapid return to stronger overturning circulation and high-latitude warming following meltwater events during the Last Glacial period. Here we investigate the Gulf Stream - subtropical gyre system properties over Dansgaard-Oeschger (DO) cycles 14 to 12, including Heinrich ice-rafting event 5. During the Holocene and Last Glacial Maximum a positive gradient in surface dwelling planktonic foraminifera d18O (Globigerinoides ruber) can be observed between the Gulf Stream and subtropical gyre, due to decreasing temperature, increasing salinity, and a change from summer to year-round occurrence of G. ruber. We assess whether this gradient was a common feature during stadial-interstadial climate oscillations of Marine Isotope Stage 3, by comparing existing G. ruber d18O from ODP Site 1060 (subtropical gyre location) and new data from ODP Site 1056 (Gulf Stream location) between 54 and 46 ka. Our results suggest that this gradient was largely absent during the period studied. During the major warm DO interstadials 14 and 12 we infer a more zonal and wider Gulf Stream, influencing both ODP Sites 1056 and 1060. A Gulf Stream presence during these major interstadials is also suggested by the large vertical d18O gradient between shallow dwelling planktonic foraminifera species, especially G. ruber, and the deep dwelling species Globorotalia inflata at site 1056, which we associate with strong summer stratification and Gulf Stream presence. A major reduction in this vertical d18O gradient from 51 ka until the end of Heinrich event 5 at 48.5 ka suggests site 1056 was situated within the subtropical gyre in this mainly cold period, from which we infer a migration of the Gulf Stream to a position nearer to the continental shelf, indicative of a narrower Gulf Stream with possibly reduced transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suborbital climate variability during the last glacial period is suggested to have involved a 1500-year pacing cycle, but the expression and spatial distribution of the ~1500-year oscillation during interglacials remains unclear. We generated a multidecade resolution record of alkenone sea surface temperature (SST) in the northwestern Pacific off central Japan during the Holocene. The SST record showed centennial and millennial variability with an amplitude of ~1 °C throughout the entire Holocene. Spectral analysis for SST variation revealed a statistically significant peak with 1470-year periodicity. The SST variation partly correlated with the variations of ice-rafted hematite-stained grain content in North Atlantic sediments. These findings indicate that the mean latitude of the Kuroshio Extension has varied on a 1500-year cycle, and suggest that a climatic link exists between the North Pacific gyre system and the high-latitude North Atlantic thermohaline circulation. The regular pacing at 1500-year intervals seen throughout both the Holocene and the last glacial period suggests that the oscillation was a response to external forcing.