19 resultados para Gruener, Gustav, 1863-1928,

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the period in question, large ice drifts transported incalculable numbers of icebergs, ice fields and ice floes from the Antarctica into the South Atlantic, confronting long-journeying sailing ships on the Cape Horn route with considerable danger. As is still the case today, the ice drifts generally tended in a northeasterly direction. Thus it can be assumed that the ice masses occuring near Cape Horn and in the South Atlantic originated in Graham Land and the South Shetland Islands, while those found in the Pacific will have come from Victoria Land. The masses drifting to Cape Horn, Isla de los Estados, the Falkland Islands and occasionally as far as the Tristan da Cunha Group are transported by the West Wind Drift and Falkland Current, diverted by the Brazil Current. The Bouvet and Agulhas Currents have little influence here. The great ice masses repeatedly reached points beyond the "outermost drift ice boundery" calculated in the course of the years, to continue on in the direction of the equator. The number of sailing ships which fell victim to the ice drifts while rounding Cape Horn can only be surmised; they simply disappeared without a trace in the expanses of the South Atlantic. Until the end of the 1900s the dangers presented by ice were less serious for westward-bound ships than for the "homeward-bounders" travelling from West to East. Following the turn of the century, however, the risk for "onwardbounders" increased significantly. Whether the ice drifts actually grew in might or whether the more frequent and more detailed reports led to this impression, could never be ascertained by the German Hydrographie Office. In the forty-one years between 1868 and 1908, ten light, ten medium and nine heavy ice years were counted, and only twelve years in which no reports of ice were submitted to the German Hydrographie Office. "One of the most terrible dangers threatening ships on their return from the Pacific Ocean," the pilot book for the Atlantic Ocean warns, "is the encounter with ice, to be expected south of the 50th parallel (approx.) in the Pacific and south of the 40th parallel (approx.) in the South Atlantic." Following the ice drift of 1854-55, thought to be the first ever recorded, the increasing numbers of sailing ships rounding Cape Horn were frequently confronted with drifts of varying sizes or with single icebergs. Then from 1892-94, a colossal ice drift crossed the path of the sailships in three stages. Several sailing ships collided with the icebergs and could be counted lucky if they survived with heavy damage to the bow and the fo regear. The reports on those which vanished for ever in the ice masses are hardly of investigative value. The English suffered particularly badly in the ice-plagued waters; their captains apparently sailed courses that led more freqently through drifts than did the sailing instructions of the German Hydrographic Office. Thus, among others, Capt. Jarvis' DUNTRUNE, also the STANMORE, ARTHURSTONE and LORD RANOCH as well as the French GALATHEE and CASHMERE all collided with icebergs. The crew of the AETHELBERTH panicked after a collision and took to their lifeboats. It was only after the ship detached itself from the iceberg it had rammed that the men returned to it and continued their journey. The TEMPLEMORE, on the other hand, had to be abandoned for good. Of the German sailing ships, the FLOTOW is to be mentioned here, and in the third phase of the drift the American SAN JOAQUIN lost a large proportion of its rigging. In the 20th century ice drifts continued to cross the courses of the Cape Horn ships. 1906 and 1908 were recorded as particularly heavy ice years. In 1908-09 both the FALKLANDBANK and the TOXTETH fell prey to ice, or so it was assumed during the subsequent Maritime Board proceedings. For the most part the German sailing ships were spared greater damages by sea. Their captains sent detailed ice reports to the German Hydrographic Office, which gratefully welcomed the information and partially incorporated it in the third and final edition of the "Pilot Book for the Atlantic Ocean." From the end of 1926 until the beginning of 1928, the last of the large sailing ships were once again confronted with "tremendous masses of icebergs and ice drifts." Reports of this period originated above all on the P-Liners PADUA, PAMIR, PASSAT, PEKING, PINNAS, PRIWALL and the ships of Gustav Erikson's fleet. The fate of the training sailship ADMIRAL KARPFANGER in connection with the ice in early 1938 was never clearly determined by the Maritime Board proceedings. Collision with an iceberg, however, is thought to be the most likely cause of accident. Today freight sailing ships no longer cross the oceans. The Cape Horn route is relatively insignificant for engine-powered ships and icebergs can be spotted in plenty of time by modern navigation technology ... The large ice drifts are no longer a menace, but only a marginal note in the final chapter of the history of transoceanic sailing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.