22 resultados para Groundwater Hydrology

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manual and low-tech well drilling techniques have potential to assist in reaching the United Nations' millennium development goal for water in sub-Saharan Africa. This study used publicly available geospatial data in a regression tree analysis to predict groundwater depth in the Zinder region of Niger to identify suitable areas for manual well drilling. Regression trees were developed and tested on a database for 3681 wells in the Zinder region. A tree with 17 terminal leaves provided a range of ground water depth estimates that were appropriate for manual drilling, though much of the tree's complexity was associated with depths that were beyond manual methods. A natural log transformation of groundwater depth was tested to see if rescaling dataset variance would result in finer distinctions for regions of shallow groundwater. The RMSE for a log-transformed tree with only 10 terminal leaves was almost half that of the untransformed 17 leaf tree for groundwater depths less than 10 m. This analysis indicated important groundwater relationships for commonly available maps of geology, soils, elevation, and enhanced vegetation index from the MODIS satellite imaging system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This database allows the simulated vertical profile of the salt concentration (mg TDS/L) to be extracted for any location within the Chaj doab, Indus basin, Pakistan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different i/S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between "younger" BSW and the Levantine origin water), and is still traceable in the water column in late summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dataset provides detailed information on the study that was conducted in Lahore's 7 major towns. The sample was taken from 472 tubewells and analyzed for major cations and anions using APHA 2012 techniques as explained herein. Besides, E.coli determination was done to check for microbial contamination. The data includes results from PHREEQC modeling of As(III)/ As(V) species and saturation indices as well as Aquachem's computed hydrochemical water facies. The WHO (2011) and EPA standards included in Aquachem identified the parameters that where in violation. Bicarbonates dominated the groundwater types with 50.21% of the samples exceeding the EPA maximum permissible limit of 250 mg/L in drinking water. Similarly, 30.51% of the samples had TDS values greater than 500 mg/L while 85.38 % of the samples exceed 10 µg/L threshold limit value of arsenic. Also, instances of high magnesium hazard values were observed which requires constant assessment if the groundwater is used for irrigation. Higher than 50% MH values are detrimental to crops which may reduce the expected yields. The membrane filtration technique using m-Endo Agar indicated that 3.59% samples had TNC (too numerous to count) values for E.coli while 5.06% showed values higher than 0 cfu/ 100 ml acceptable value in drinking water. Any traces of E-coli in a groundwater sample indicate recent fecal contamination. Such outcomes signify presence of enteric pathogens. If the groundwater is not properly dosed with disinfectants it may cause harm to human health. It is concluded that more studies are needed and proper groundwater management implement to safeguard the lives of communities that depend solely on groundwater in the city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These data are from a field experiment conducted in a shallow alluvial aquifer along the Colorado River in Rifle, Colorado, USA. In this experiment, bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Data include names and location data for boreholes, geochemical data for all the boreholes between June 1, 2010 and January 1, 2011, microarray data provided as signal to noise ratio (SNR) for individual microarray probes, microarray data provided as signal to noise ratio (SNR) by Genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides (HuBacteroides)) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens, rotavirus and all pathogens combined. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ?87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.