4 resultados para Grid cells
em Publishing Network for Geoscientific
Resumo:
Large-scale studies of ocean biogeochemistry and carbon cycling have often partitioned the ocean into regions along lines of latitude and longitude despite the fact that spatially more complex boundaries would be closer to the true biogeography of the ocean. Herein, we define 17 open-ocean biomes classified from four observational data sets: sea surface temperature (SST), spring/summer chlorophyll a concentrations (Chl a), ice fraction, and maximum mixed layer depth (maxMLD) on a 1° × 1° grid. By considering interannual variability for each input, we create dynamic ocean biome boundaries that shift annually between 1998 and 2010. Additionally we create a core biome map, which includes only the grid cells that do not change biome assignment across the 13 years of the time-varying biomes. These biomes can be used in future studies to distinguish large-scale ocean regions based on biogeochemical function.
Resumo:
SIMBAA is a spatially explicit, individual-based simulation model. It was developed to analyse the response of populations of Antarctic benthic species and their diversity to iceberg scouring. This disturbance is causing a high local mortality providing potential space for new colonisation. Traits can be attributed to model species, e.g. in terms of reproduction, dispersal, and life span. Physical disturbances can be designed in space and time, e.g. in terms of size, shape, and frequency. Environmental heterogeneity can be considered by cell-specific capacities to host a certain number of individuals. When grid cells become empty (after a disturbance event or due to natural mortality of of an individual), a lottery decides which individual from which species stored in a pool of candidates (for this cell) will recruit in that cell. After a defined period the individuals become mature and their offspring are dispersed and stored in the pool of candidates. The biological parameters and disturbance regimes decide on how long an individual lives. Temporal development of single populations of species as well as Shannon diversity are depicted in the main window graphically and primary values are listed. Examples for simulations can be loaded and saved as sgf-files. The results are also shown in an additional window in a dimensionless area with 50 x 50 cells, which contain single individuals depicted as circles; their colour indicates the assignment to the self-designed model species and the size represents their age. Dominant species per cell and disturbed areas can also be depicted. Output of simulation runs can be saved as images, which can be assembled to video-clips by standard computer programs (see GIF-examples of which "Demo 1" represents the response of the Antarctic benthos to iceberg scouring and "Demo 2" represents a simulation of a deep-sea benthic habitat).
Resumo:
The present data set was used as a training set for a Habitat Suitability Model. It contains occurrence (presence-only) of living Lophelia pertusa reefs in the Irish continental margin, which were assembled from databases, cruise reports and publications. A total of 4423 records were inspected and quality assessed to ensure that they (1) represented confirmed living L. pertusa reefs (so excluding 2900 records of dead and isolated coral colony records); (2) were derived from sampling equipment that allows for accurate (<200 m) geo-referencing (so excluding 620 records derived mainly from trawling and dredging activities); and (3) were not duplicated. A total of 245 occurrences were retained for the analysis. Coral observations are highly clustered in regions targeted by research expeditions, which might lead to falsely inflated model evaluation measures (Veloz, 2009). Therefore, we coarsened the distribution data by deleting all but one record within grid cells of 0.02° resolution (Davies & Guinotte 2011). The remaining 53 points were subject to a spatial cross-validation process: a random presence point was chosen, grouped with its 12 closest neighbour presence points based on Euclidean distance and withheld from model training. This process was repeated for all records, resulting in 53 replicates of spatially non-overlapping sets of test (n=13) and training (n=40) data. The final 53 occurrence records were used for model training.
Resumo:
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.