107 resultados para Great Northern European Famine

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigating the processes that led to the end of the last interglacial period is relevant for understanding how our ongoing interglacial will end, which has been a matter of much debate. A recent ice core from Greenland demonstrates climate cooling from 122,000 years ago driven by orbitally controlled insolation, with glacial inception at 118,000 years ago. Here we present an annually resolved, layer-counted record of varve thickness, quartz grain size and pollen assemblages from a maar lake in the Eifel (Germany), which documents a late Eemian aridity pulse lasting 468 years with dust storms, aridity, bushfire and a decline of thermophilous trees at the time of glacial inception. We interpret the decrease in both precipitation and temperature as an indication of a close link of this extreme climate event to a sudden southward shift of the position of the North Atlantic drift, the ocean current that brings warm surface waters to the northern European region. The late Eemian aridity pulse occurred at a 65° N July insolation of 416 W/m**2, close to today's value of 428 W/m**2, and may therefore be relevant for the interpretation of present-day climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacial landforms in northern Russia, from the Timan Ridge in the west to the east of the Urals, have been mapped by aerial photographs and satellite images supported by field observations. An east-west trending belt of fresh hummock-and-lake glaciokarst landscapes has been traced to the north of 67°N. The southern boundary of these landscapes is called the Markhida Line, which is interpreted as a nearly synchronous limit of the last ice sheet that affected this region. The hummocky landscapes are subdivided into three types according to the stage of postglacial modification: Markhida, Harbei and Halmer. The Halmer landscape on the Uralian piedmont in the east is the freshest, whereas the westernmost Markhida landscape is more eroded. The west- east gradient in morphology is considered to be a result of the time-transgressive melting of stagnant glacier ice and of the underlying permafrost. The pattern of ice-pushed ridges and other directional features reflects a dominant ice flow direction from the Kara Sea shelf. Traces of ice movement from the central Barents Sea are only discernible in the Pechora River left bank area west of 50°E. In the Polar Urals the horseshoe-shaped end moraines at altitudes of up to 560 m a.s.l. reflect ice movement up-valley from the Kara Ice Sheet, indicating the absence of a contemporaneous ice dome in the mountains. The Markhida moraines, superimposed onto the Eemian strata, represent the maximum ice sheet extent in the western part of the Pechora Basin during the Weichselian. The Markhida Line truncates the huge arcs of the Laya-Adzva and Rogovaya ice-pushed ridges protruding to the south. The latter moraines therefore reflect an older ice advance, probably also of Weichselian age. Still farther south, fluvially dissected morainic plateaus without lakes are of pre-Eemian age, because they plunge northwards under marine Eemian sediments. Shorelines of the large ice-dammed Lake Komi, identified between 90 and 110 m a.s.l. in the areas south of the Markhida Line, are radiocarbon dated to be older than 45 ka. The shorelines, incised into the Laya-Adzva moraines, morphologically interfinger with the Markhida moraines, indicating that the last ice advance onto the Russian mainland reached the Markhida Line during the Middle or Early Weichselian, before 45 ka ago.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: