40 resultados para Great Lakes (North America)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

List of non-indigenous species (NIS) established in the Great Lakes-St. Lawrence River region and the North and Baltic Seas region, their geographic origin, and taxonomic assignment. Asterisks mark the NIS that occur in both the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. GL, SL, NW, NE, SW and SE denote the Great Lakes, St. Lawrence River, north-west, north-east, south-west, and south-east, respectively. Eurasia represents inland freshwaters except Yangtze River, Indo-Pacific represents Indian Ocean and the archipelago of Indonesia, Malaysia, and Pilipinas, North America (N America) represents inland freshwaters except the Laurentian Great Lakes, St. Lawrence and Mississippi Rivers, while Australia, New Zealand, Africa and South America (S America) cover all inland freshwaters in these areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric PBDEs were measured on a monthly basis in 2002-2004 at Point Petre, a rural site in the Great Lakes. Average air concentrations were 7.0 ± 13 pg/m**3 for the sum of 14BDE (excluding BDE-209), and 1.8 ± 1.5 pg/m**3 for BDE-209. Concentrations of 3 dominant congeners (i.e., BDE-47, 99, and 209) were comparable to previous measurements at remote/rural sites around the Great Lakes, but much lower than those at urban areas. Weak temperature dependence and strong linear correlations between relatively volatile congeners suggest importance of advective inputs of gaseous species. The significant correlation between BDE-209 and 183 implies their transport inputs associated with particles. Particle-bound percentages were found greater for highly brominated congeners than less brominated ones. These percentages increase with decreasing ambient temperatures. The observed gas/particle partitioning is consistent with laboratory measurements and fits well to the Junge-Pankow model. Using air mass back-trajectories, atmospheric transport to Point Petre was estimated as 76% for BDE-47, 67% for BDE-99, and 70% for BDE-209 from west-northwest and southwest directions. During the same time period, similar congener profiles and concentration levels were found at Alert in the Canadian High Arctic. Different inter-annual variations between Point Petre and Alert indicate that emissions from other regions than North America could also contribute PBDEs in the Arctic. In contrast to weak temperature effect at Point Petre, significant temperature dependence in the summertime implies volatilization emissions of PBDEs at Alert. Meanwhile, episodic observations in the wintertime were likely associated with enhanced inputs through long-range transport during the Arctic Haze period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) - despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many marine radiogenic isotope records show both spatial and temporal variations, reflecting both the degree of mixing of distinct sources in the oceans and changes in the distribution of chemical weathering on the continents. However, changes in weathering and transport processes may themselves affect the composition of radiogenic isotopes released into seawater. The provenance of physically weathered material in the Labrador Sea, constrained through the use of Ar-Ar ages of individual detrital minerals, has been used to estimate the relative contributions of chemically weathered terranes releasing radiogenic isotopes into the Labrador Sea. A simple box-model approach for balancing observed Nd-isotope variations has been used to constrain the relative importance of localised input in the Labrador Sea, and the subsequent mixing of Labrador Sea Water into North Atlantic Deep-Water. The long-term pattern of erosion and deep-water formation around the North Atlantic seems to have been a relatively stable feature since 1.5 Ma, although there has been a dramatic shift in the nature of physical and chemical weathering affecting the release of Hf and Pb isotopes. The modelled Nd isotopes imply a relative decrease in water mass advection into the Labrador Sea between 2.4 and 1.5 Ma, accompanied by a decrease in the rate of overturning, possibly caused by an increased freshwater input into the Labrador Sea.