8 resultados para Grass family (Plants)
em Publishing Network for Geoscientific
Resumo:
Aim Palaeoecological reconstructions document past vegetation change with estimates of rapid rates of changing species distribution limits that are often not matched by model simulations of climate-driven vegetation dynamics. Genetic surveys of extant plant populations have yielded new insight into continental vegetation histories, challenging traditional interpretations that had been based on pollen data. Our aim is to examine an updated continental pollen data set from Europe in the light of the new ideas about vegetation dynamics emerging from genetic research and vegetation modelling studies. Location Europe Methods: We use pollen data from the European Pollen Database (EPD) to construct interpolated maps of pollen percentages documenting change in distribution and abundance of major plant genera and the grass family in Europe over the last 15,000 years. Results: Our analyses confirm high rates of postglacial spread with at least 1000 metres per year for Corylus, Ulmus and Alnus and average rates of 400 metres per year for Tilia, Quercus, Fagus and Carpinus. The late Holocene expansions of Picea and Fagus populations in many European regions cannot be explained by migrational lag. Both taxa shift their population centres towards the Atlantic coast suggesting that climate may have played a role in the timing of their expansions. The slowest rates of spread were reconstructed for Abies. Main conclusions: The calculated rates of postglacial plant spread are higher in Europe than those from North America, which may be due to more rapid shifts in climate mediated by the Gulf Stream and westerly winds. Late Holocene anthropogenic land use practices in Europe had major effects on individual taxa, which in combination with climate change contributed to shifts in areas of abundance and dominance. The high rates of spread calculated from the European pollen data are consistent with the common tree species rapidly tracking early Holocene climate change and contribute to the debate on the consequences of global warming for plant distributions.
Resumo:
Globalization has resulted in unprecedented movements of people, goods, and alien species across the planet. Although the impacts of biological invasions are widely appreciated, a bias exists in research effort to post-dispersal processes because of the difficulties of measuring propagule pressure. The Antarctic provides an ideal model system in which to investigate propagule movements because of the region's isolation and small number of entry routes. Here we investigated the logistics operations of the South African National Antarctic Programme (SANAP) and quantified the initial dispersal of alien species into the region. we found that over 1400 seeds from 99 taxa are transported into the Antarctic each field season in association with SANAP passenger luggage and cargo. The first ever assessment of propagule drop-off indicated that 30-50% of these propagules will enter the recipient environment. Many of the taxa include cosmopolitan weeds and known aliens in the Antarctic, indicating that logistics operations form part of a globally self-perpetuating cycle moving alien species between areas of human disturbance. in addition, propagules of some taxa native to the Antarctic region were also found, suggesting that human movements may be facilitating intra-regional homogenization. Several relatively simple changes in biosecurity policy that could significantly reduce the threat of introduction of nonnative species are suggested.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.
Resumo:
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.
Resumo:
Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane d13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the d13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary d13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4 per mil to -26.5 per mil) were generally within the range of d13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the d13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using d13C values from both C3 and C4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the fC3 values as the minimum and maximum d13C values are approached, and a hyperbolic function that takes into account the differences between C3 and C4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed d13C values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert d13C measurements on sedimentary n-alkanes directly into reconstructions of C3 vegetation cover.