271 resultados para Graphical records

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Our geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current (NAC) and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the Greenland ice sheet during MIS M2, despite near-modern atmospheric CO2 concentrations. Before and after MIS M2, heat transport via the NAC was crucial in maintaining warm climates comparable to those predicted for the end of this century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study based on X-ray chronologies and the stable isotopic composition of fossil Porites spp. corals from the northern Gulf of Aqaba (Red Sea) covering the mid-Holocene period from 5750 to 4450 14C years BP (before present). The stable oxygen and carbon isotopic compositions of five specimens reveal regular annual periodicities. Compared with modern Porites spp. from the same environment, the average seasonal delta18O amplitude of the fossil corals is higher (by ca. 0.35-0.60?), whereas annual growth rates are lower (by ca. 3.5 to 2 mm/year). This suggests stronger seasonality of sea surface temperatures and increased variability of the oxygen isotopic composition of the sea water due to changes in the precipitation and evaporation regime during the mid-Holocene. Most likely, summer monsoon rains reached the northern end of the Red Sea at that time. Average annual coral growth rates are diminished probably due to an increased input and resuspension of terrestrial debris to the shallow marine environment during more humid conditions. Our results corroborate published reports of paleodata and model simulations suggesting a northward migration of the African monsoon giving rise to increased seasonalities during the mid-Holocene over northeastern Africa and Arabia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve quantitative interpretation of ice core aeolian dust records a systematic methodical comparison has been made involving methods of water-insoluble particle counting (Coulter Counter and laser-sensing particle detector), soluble ions (ion chromatography, IC, and continuous flow analysis, CFA), elemental analysis (inductively coupled plasma mass spectroscopy, ICP-MS, at pH 1 and after full acid digestion), and water-insoluble elemental analysis (proton induced X-ray emission, PIXE). Ice core samples covering the last deglaciation have been used from the EPICA Dome C (EDC) and the EPICA Dronning Maud Land (EDML) ice cores. All methods correlate very well amongst each other. The ratios of glacial age concentrations to Holocene concentrations, which are typically a factor ~100, differ significantly between the methods, but differences are limited to a factor < 2 for most methods with insoluble particles showing the largest change. The recovery of ICP-MS measurements depends on the digestion method and is different for different elements and during different climatic periods. EDC and EDML samples have similar dust composition, which suggests a common dust source or a common mixture of sources for the two sites. The analysed samples further reveal a change of dust composition during the last deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.