7 resultados para Graphical User Interface
em Publishing Network for Geoscientific
Resumo:
We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariance matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.
Resumo:
This paper presents a new tool for large-area photo-mosaicking (LAPM tool). This tool was developed specifically for the purpose of underwater mosaicking, and it is aimed at providing end-user scientists with an easy and robust way to construct large photo-mosaics from any set of images. It is notably capable of constructing mosaics with an unlimited number of images on any modern computer (minimum 1.30 GHz, 2 GB RAM). The mosaicking process can rely on both feature matching and navigation data. This is complemented by an intuitive graphical user interface, which gives the user the ability to select feature matches between any pair of overlapping images. Finally, mosaic files are given geographic attributes that permit direct import into ArcGIS. So far, the LAPM tool has been successfully used to construct geo-referenced photo-mosaics with photo and video material from several scientific cruises. The largest photo-mosaic contained more than 5000 images for a total area of about 105,000 m**2. This is the first article to present and to provide a finished and functional program to construct large geo-referenced photo-mosaics of the seafloor using feature detection and matching techniques. It also presents concrete examples of photo-mosaics produced with the LAPM tool.
Resumo:
LAPMv2 is a research software solution specifically developed to allow marine scientists to produce geo-referenced visual maps of the seafloor, known as mosaics, from a set of underwater images and navigation data. LAPMv2 has a graphical user interface that guides the user through the different steps of the mosaicking workflow. LAPMv2 runs on 64-bit Windows, MacOS X and Linux operating systems. There are two versions for each operating system: (1) the WEB-installers (lightweight but require an internet connection during the installation) and (2) the MCR installers (large files but can be installed on computer without internet-connection). The user manual explains how to install and start the program on the different operating systems. Go to http://www.lapm.eu.com for further information about the latest versions of LAPMv2.
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.
Resumo:
Maritime accidents involving ships carrying passengers may pose a high risk with respect to human casualties. For effective risk mitigation, an insight into the process of risk escalation is needed. This requires a proactive approach when it comes to risk modelling for maritime transportation systems. Most of the existing models are based on historical data on maritime accidents, and thus they can be considered reactive instead of proactive. This paper introduces a systematic, transferable and proactive framework estimating the risk for maritime transportation systems, meeting the requirements stemming from the adopted formal definition of risk. The framework focuses on ship-ship collisions in the open sea, with a RoRo/Passenger ship (RoPax) being considered as the struck ship. First, it covers an identification of the events that follow a collision between two ships in the open sea, and, second, it evaluates the probabilities of these events, concluding by determining the severity of a collision. The risk framework is developed with the use of Bayesian Belief Networks and utilizes a set of analytical methods for the estimation of the risk model parameters. The model can be run with the use of GeNIe software package. Finally, a case study is presented, in which the risk framework developed here is applied to a maritime transportation system operating in the Gulf of Finland (GoF). The results obtained are compared to the historical data and available models, in which a RoPax was involved in a collision, and good agreement with the available records is found.