3 resultados para Gothic revival (Literature) -- Canada
em Publishing Network for Geoscientific
Resumo:
Peat and net carbon accumulation rates in two sub-arctic peat plateaus of west-central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600-5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long-term peat and net carbon accumulation rates for both profiles are 0.30-0.31 mm/yr and 12.5-12.7 gC/m**2/yr, respectively. These values reflect very slow peat accumulation (0.04-0.09 mm/yr) and net carbon accumulation (3.7-5.2 gC/m**2/yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.
Resumo:
In this paper, we present new detailed data on the trace metal content of more than 200 shallow polar snow samples collected at various depths in numerous locations mainly in Antarctica and Greenland. The samples were collected in ultraclean plexiglass or teflon tubes from the walls of hand dug pits, using stringent contamination free techniques controlled by severe blank tests. They were then analysed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption, after a preconcentration step (by non boiling evaporation in teflon bulbs) which includes dissolving any solid particles by concentrated nitric and hydrofluoric acids. The overall precision on the measured concentrations is of the order of 10 % for all the metals except Pb (20 %) and Cd (35 %), using 95 % confidence limits. The data obtained are compared with those published previously in the literature. Part of these previous data are shown to be erroneously too high, probably because of con-tamination problems both during field collection and analysis.