4 resultados para Global features

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment deformation features in CRP-2/2A were described during normal logging procedures and from core-scan images. In this paper the origin of soft-sediment folding, contorted bedding, microfaulting, clastic dykes, shear zones and intraformational breccias is discussed. The features have a stratigraphic distribution related to major unconformities and sequence boundaries. Hypotheses for the origins of sediment deformation include hydrofracturing, subglacial shearing, slumping, and gas hydrate formation. Shear zones, microfaults, clastic dykes and contorted bedding within rapidly deposited sediments, suggest that slumping in an ice-distal environment occurred in the early Oligocene. A till wedge beneath a diamictite at 364 mbsf the mid-Oligocene section represents the oldest evidence of grounded ice in CRP-2/2A. Shear zones with a subglacial origin in the early late Oligocene and early Miocene sections of the core are evidence of further grounding events. The interpretation of sediment deformation in CRP-2/2A is compared to other Antarctic stratigraphic records and global eustatic change between the late Eocenel/early Oligocene and the middle Miocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topographic variation, the spatial variation in elevation and terrain features, underpins a myriad of patterns and processes in geography and ecology and is key to understanding the variation of life on the planet. The characterization of this variation is scale-dependent, i.e. it varies with the distance over which features are assessed and with the spatial grain (grid cell resolution) of analysis. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale basic research and analytical applications, however to date, such technique is unavailable. Here we used the digital elevation model products of global 250 m GMTED and near-global 90 m SRTM to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile and tangential curvature, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches (median, average, minimum, maximum, standard deviation, percent cover, count, majority, Shannon Index, entropy, uniformity). While a global cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at http://www.earthenv.org and can serve as a basis for standardized hydrological, environmental and biodiversity modeling at a global extent.