13 resultados para Global Continuation Principle Of Leray-schauder

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of 'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°x1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32 ± 5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. These publicly accessible results will guide future parameterizations of marine ecosystem models exploring the link between phytoplankton community structure and marine biogeochemical cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset consists of global raster maps indicating the habitat suitability for 7 suborders of cold water octocorals (Octocorallia found deeper than 50m). Maps present a relative habitat suitability index ranging from 0 (unsuitable) to 100 (highly suitable). Two maps are provided for each suborder (Alcyoniina, Calcaxonia, Holaxonia, Scleraxonia, Sessiliflorae, Stolonifera, and Subselliflorae). A publicly accessable low resolution map (grid size 10x10 arc-minutes) and a restricted access high resolution map (grid size 30x30 arc-seconds). Maps are geotiff format incorporating LZW compression to reduce file size. Please contact the corresponding author (Chris Yesson) for access to the high resolution data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished) from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955-2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50-70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000). For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica) to 29 pg (colonial Phaeocystis globosa). Non-zero Phaeocystis cell biomasses (without mucus carbon) range from 2.9 - 10?5 µg l-1 to 5.4 - 103 µg l-1, with a mean of 45.7 µg l-1 and a median of 3.0 µg l-1. Highest biomasses occur in the Southern Ocean below 70° S (up to 783.9 µg l-1), and in the North Atlantic around 50° N (up to 5.4 - 103 µg l-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topographic variation, the spatial variation in elevation and terrain features, underpins a myriad of patterns and processes in geography and ecology and is key to understanding the variation of life on the planet. The characterization of this variation is scale-dependent, i.e. it varies with the distance over which features are assessed and with the spatial grain (grid cell resolution) of analysis. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale basic research and analytical applications, however to date, such technique is unavailable. Here we used the digital elevation model products of global 250 m GMTED and near-global 90 m SRTM to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile and tangential curvature, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches (median, average, minimum, maximum, standard deviation, percent cover, count, majority, Shannon Index, entropy, uniformity). While a global cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at http://www.earthenv.org and can serve as a basis for standardized hydrological, environmental and biodiversity modeling at a global extent.