13 resultados para Germania, Enigma, Hollerith

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early Holocene recession of the ice cover over Germania Land in North-East Greenland 7.5 ka B.P. brought the Inland Ice margin back to a position close to the present. Continued recession after that time lead to the formation of a "Storstrømmen Sound" which separated Germania Land from mainland Greenland in the period from about 6 to 1 ka B.P. The present filling of the approximately 100 km long sound by the glaciers of Storstrømmen and Kofoed-Hansen Bræ must therefore have taken place during the Little lce Age. In an archaeological sense this implies deterioration of the living conditions of Neo-Eskimos compared to those of Palaeo-Eskimos. The neoglacial re-formation and present existence of the glaciers as a Little Ice Age relict may imply a present-day instability in their dynamics, as demonstrated by the pulsations (surge-like behaviour) in the last part of the 20th century. An earlier Little Ice Age advance might possibly have had the same amplitude as that documented from the 20th century but its exact age and character is not known. The glacio-isostatic response of the earth's crust to the variations in the Holocene glacier load implies a relatively slow and slight emergence and subsequent submergence. The shift from emergence to submergence must have taken place between about 2 and 1 ka B.P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only about half of all the CO_2 that has been produced by the burning of fossil fuels now remains in the atmosphere. The CO_2 "missing" from the atmosphere is the subject of an important debate. It was thought that the great majority of the missing CO_2 has invaded the ocean, for this system naturally acts as a giant chemical regulator of the atmosphere. Although it is clear that ocean processes have a major role in the regulation of the carbon dioxide content of the atmosphere through air-sea exchange processes, recent studies of the oceanic carbon cycle and air-sea interaction indicate that oceanic carbon is in a quasi-steady state via the system of biological and physical processes in the ocean interior. It is difficult to determine whether the ocean has the capacity to take up the increasing air-born CO_2 released by human activities over the past five or six decades. To understand this enigma, we need a better understanding of the natural variability of the oceanic carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ontong Java Plateau in the western Pacific is anomalous compared to other oceanic large igneous provinces in that it appears to have never formed a large subaerial plateau. Paleoeruption depths (at 122 Ma) estimated from dissolved H2O and CO2 in submarine basaltic glass pillow rims vary from ~1100 m below sea level (mbsl) on the central part of the plateau to 2200-3000 mbsl on the northeastern edge. Our results suggest maximum initial uplift for the plateau of 2500-3600 m above the surrounding seafloor and 1500+/-400 m of postemplacement subsidence since 122 Ma. Our estimates of uplift and subsidence for the plateau are significantly less than predictions from thermal models of oceanic lithosphere, and thus our results are inconsistent with formation of the plateau by a high-temperature mantle plume. Two controversial possibilities to explain the anomalous uplift and subsidence are that the plateau (1) formed as a result of a giant bolide impact, or (2) formed from a mantle plume but has a lower crust of dense garnet granulite and/or eclogite; neither of these possibilities is fully consistent with all available geological, geophysical, and geochemical data. The origin of the largest magmatic event on Earth in the past 200 m.y. thus remains an enigma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main motivation for Integrated Ocean Drilling Program Expedition 310 to the Tahitian Archipelago was the assumption that the last deglacial sea-level rise is precisely recorded in the coral reefs of this far-field site. The Tahitian deglacial succession typically consists of coral framework subsequently encrusted by coralline algae and microbialites. The high abundance of microbialites is uncommon for shallow-water coral reefs, and the environmental conditions favouring their development are still poorly understood. Microbioerosion patterns in the three principal framework components (corals, coralline algae, microbialites) are studied with respect to relative light availability during coral growth and subsequent encrustation, in order to constrain the palaeobathymetry and the relative timing of the encrustation. Unexpectedly for a tropical, light-flooded setting, ichnotaxa typical for the deep-euphotic to dysphotic zone dominate. The key ichnotaxa for the shallow euphotic zone are scarce in the analysed sample set, and are restricted tothe baseof thedeglacial succession, thus reflecting thedeglacial sea-level rise. At the base of the deglacial reef succession, the ichnocoenoses present in the corals indicate shallower bathymetries than those in the encrusting microbialites. This is in agreement with radiocarbon data that indicate a time gap of more than 600 years between coral death and microbialite formation. At the top of the deglacial reef succession, in contrast, the microbioerosion patterns in the three framework components indicate a uniform palaeobathymetry, and radiocarbon ages imply that encrustation took place shortly after coral demise. An enigma arises from the fact that the ichnocoenoses imply photic conditions that appear very deep for zooxanthellate coral growth. During the deglacial sea-level rise increased nutrients and fluvial influx may have led to (seasonal?) eutrophication, condensing the photic zonation. This would have exerted stress on the coral ecosystem and played a significant role in initiating microbialite development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesozoic calcareous nannofossil assemblages recovered during Ocean Drilling Program Leg 149 from the Iberia Abyssal Plain off the coast of Portugal were examined to determine the age of the rifting processes that affected the western Iberia Margin. Dark carbonaceous claystones (black shales) recovered from Site 901 contain highly diverse and abundant Tithonian calcareous nannofossil assemblages. Careful examination and documentation of this material has extended the ranges of numerous Jurassic and Cretaceous species and detailed a significant Late Jurassic assemblage turnover observed in the calcareous nannofossil record. The Lower Cretaceous sequence consists of intervals of serpentinized peridotite intercalated between various breccias and dark claystones. With the exception of a few samples, calcareous nannofossils are few and moderately preserved. The age of nannofossils within these varied sedimentary lithologies ranges from the late Barremian to the late Aptian. Eight new species are described: Ansulasphaera covingtonii, Clepsilithus meniscus, Conusphaera sinespina, Crepidolithus parvulus, Diazomatholithus galicianus, Percivalia arata, Rotelapillus pleoseptatus, and Tranolithus incus. Also proposed are five new combinations.