5 resultados para Geometric mixture
em Publishing Network for Geoscientific
Resumo:
Field investigations of the Laptev Sea shoreface morphology were carried out (1) off erosional shores composed of unconsolidated sediments, (2) off the modern delta shores of the Lena River, and (3) off rocky shores. It was found that profiles off erosional shores had a concave shape. This shape is not well described by commonly applied power functions, a feature, which is in disagreement with the generally accepted concept of the equilibrium shape of shoreface profiles. The position of the lower shoreface boundary is determined by the elevation of the coastal lowland inundated during the last transgression (at -5 to -10 m) and may easily be recognized by a sharp, an order of magnitude decrease in the mean inclination of the sea floor. The mean shoreface inclination depends on sediment grain-size and ranges from 0.0022 to 0.033. The concave shape of the shoreface did not change substantially during the last 20-30 years, which indicates that shoreline retreat did not slow down and hence suggests continued intensive coastal erosion in the 21st century. The underwater part of the Lena River delta extends up to 35 km offshore. Its upper part is formed by a shallow and up to 18-km wide bench, which reaches depths of 2-3 m along the outer edge. The evolution of the delta was irregular. Whereas some parts of the delta are advancing rapidly (58 m/year), other parts are eroding. Comparison of measured profiles with older bathymetric data gave an opportunity to evaluate the changes of the underwater delta over past decades. Bathymetric surveys of the seabed around the delta can thus contribute towards a quantification of the sediment budget of the river-sea system. In addition, some sections of the Laptev Sea coast are composed of bedrock that has a comparatively low resistance to wave erosion. These sections may supply a considerable amount of sediment, especially if the cliffs are high. This source must therefore also be taken into account when assessing the contribution of shore erosion to the Laptev Sea sediment budget.
Resumo:
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
Resumo:
Basalts from the base of a small seamount on ~1.5-m.y.-old crust west of the East Pacific Rise (EPR) at 9°N are intermediate in chemical and isotopic composition between light-rare-earth-element-depleted tholeiite (normal midocean ridge basalt (MORB)) and alkali basalt. Like oceanic alkali basalt, these rocks contain significantly more Ba, K, P, Sr, Ti, U, and Zr than normal MORB. Since the absolute abundances of these elements are still well below alkali basalt levels, the label transitional is adopted for these basalts. A series of fractionated MORB also occurs in this area, northwest of the Siqueiros Fracture Zone - Transform Fault. The normal tholeiites are either olivine-plagioclase or plagioclase-clinopyroxene phyric, while the transitional basalts are spinel-olivine phyric. Fractional crystallization quantitatively accounts for the chemical variability of the tholeiitic series but not for the transitional basalts. The tholeiitic series probably evolved in a crustal magma chamber ~4 km below the crest of the East Pacific Rise. 143Nd/144Nd and other chemical data suggest that the large-ion-lithophile-enriched transitional basalts may represent a hybrid of normal MORB and Siqueiros area alkali basalt. Incompatible element plots of K, P, and U indicate possible derivation of the transitional basalts by magma mixing. Magma mixing of unfractionated normal MORB and Siqueiros alkali basalt has been quantified. Derivation of the transitional basalts from a 1:1 mixture is supported by all available chemical data, including Cr, Cu, Nd, Ni, Sm, Sr, U, and V. This magma mixing apparently occurred at ?<~30 km depth within a few tens of kilometers from the EPR axis. These Siqueiros area EPR transitional basalts are compared with Mid-Atlantic Ridge (MAR) transitional basalts from the Iceland and Azores areas. The Siqueiros area basalts reflect a profound chemical and isotopic heterogeneity in the upper mantle, similar to that found along the MAR. Unlike the MAR, the EPR shows no evidence of plumelike bulges and associated large-scale outpourings of nonnormal MORB resulting from these mantle heterogeneities. Siqueiros alkali basalt and MORB, as well as transitional basalt and MORB, were recovered from single dredge hauls. Such close spatial and temporal proximity of the inferred mantle sources places severe constraints on geometric and physicochemical upper mantle models.
Resumo:
We refined the strontium isotope seawater curve for the Paleocene and early Eocene by analysis of samples recovered from the Walvis Ridge during Ocean Drilling Project (ODP) Leg 208. The highest 87Sr/86Sr values occurred in the earliest Paleocene at 65 Ma and generally decreased throughout the Paleocene, reaching minimum values between 53 and 51 Ma in the early Eocene before beginning to increase again at 50 Ma. A plausible explanation for the 87Sr/86Sr decrease between 65 and 51 Ma is increased rates of hydrothermal activity and/or the eruption and weathering of large igneous provinces (e.g., Deccan Traps and North Atlantic). Strontium isotope variations closely parallel sea level and benthic d18O changes during the late Paleocene and early Eocene, supporting previous studies linking tectonic reorganization and increased volcanism to high sea level, high CO2, and warm global temperatures.