3 resultados para Geolocation databases
em Publishing Network for Geoscientific
Resumo:
This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.
Resumo:
Correct species identifications are of tremendous importance for invasion ecology, as mistakes could lead to misdirecting limited resources against harmless species or inaction against problematic ones. DNA barcoding is becoming a promising and reliable tool for species identifications, however the efficacy of such molecular taxonomy depends on gene region(s) that provide a unique sequence to differentiate among species and on availability of reference sequences in existing genetic databases. Here, we assembled a list of aquatic and terrestrial non-indigenous species (NIS) and checked two leading genetic databases for corresponding sequences of six genome regions used for DNA barcoding. The genetic databases were checked in 2010, 2012, and 2016. All four aquatic kingdoms (Animalia, Chromista, Plantae and Protozoa) were initially equally represented in the genetic databases, with 64, 65, 69, and 61% of NIS included, respectively. Sequences for terrestrial NIS were present at rates of 58 and 78% for Animalia and Plantae, respectively. Six years later, the number of sequences for aquatic NIS increased to 75, 75, 74, and 63% respectively, while those for terrestrial NIS increased to 74 and 88% respectively. Genetic databases are marginally better populated with sequences of terrestrial NIS of plants compared to aquatic NIS and terrestrial NIS of animals. The rate at which sequences are added to databases is not equal among taxa. Though some groups of NIS are not detectable at all based on available data - mostly aquatic ones - encouragingly, current availability of sequences of taxa with environmental and/or economic impact is relatively good and continues to increase with time.