25 resultados para Geodesy

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To estimate the kinematics of the SIRGAS reference frame, the Deutsches Geodätisches Forschungsinstitut (DGFI) as the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNNAC SIR), yearly computes a cumulative (multi-year) solution containing all available weekly solutions delivered by the SIRGAS analysis centres. These cumulative solutions include those models, standards, and strategies widely applied at the time in which they were computed and cover different time spans depending on the availability of the weekly solutions. This data set corresponds to the multi-year solution SIR11P01. It is based on the combination of the weekly normal equations covering the time span from 2000-01-02 (GPS week 1043) to 2011-04-16 (GPS week 1631), when the IGS08 reference frame was introduced. It refers to ITRF2008, epoch 2005.0 and contains 230 stations with 269 occupations. Its precision was estimated to be ±1.0 mm (horizontal) and ±2.4 mm (vertical) for the station positions, and ±0.7 mm/a (horizontal) and ±1.1 mm/a (vertical) for the constant velocities. Computation strategy and results are in detail described in Sánchez and Seitz (2011). The IGS RNAAC SIR computation of the SIRGAS reference frame is possible thanks to the active participation of many Latin American and Caribbean colleagues, who not only make the measurements of the stations available, but also operate SIRGAS analysis centres processing the observational data on a routine basis (more details in http://www.sirgas.org). The achievements of SIRGAS are a consequence of a successful international geodetic cooperation not only following and meeting concrete objectives, but also becoming a permanent and self-sustaining geodetic community to guarantee quality, reliability, and long-term stability of the SIRGAS reference frame. The SIRGAS activities are strongly supported by the International Association of Geodesy (IAG) and the Pan-American Institute for Geography and History (PAIGH). The IGS RNAAC SIR highly appreciates all this support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seamounts and knolls are 'undersea mountains', the former rising more than 1000 m from the sea floor. These features provide important habitats for aquatic predators, demersal deep-sea fish and benthic invertebrates. However most seamounts have not been surveyed and their numbers and locations are not well known. Previous efforts to locate and quantify seamounts have used relatively coarse bathymetry grids. Here we use global bathymetric data at 30 arc-second resolution to identify seamounts and knolls. We identify 33,452 seamounts and 138,412 knolls, representing the largest global set of identified seamounts and knolls to date. We compare estimated seamount numbers, locations, and depths with validation sets of seamount data from New Zealand and Azores. This comparison indicates the method we apply finds 94% of seamounts, but may overestimate seamount numbers along ridges and in areas where faulting and seafloor spreading creates highly complex topography. The seamounts and knolls identified herein are significantly geographically biased towards areas surveyed with ship-based soundings. As only 6.5% of the ocean floor has been surveyed with soundings it is likely that new seamounts will be uncovered as surveying improves. Seamount habitats constitute approximately 4.7% of the ocean floor, whilst knolls cover 16.3%. Regional distribution of these features is examined, and we find a disproportionate number of productive knolls, with a summit depth of <1.5 km, located in the Southern Ocean. Less than 2% of seamounts are within marine protected areas and the majority of these are located within exclusive economic zones with few on the High Seas. The database of seamounts and knolls resulting from this study will be a useful resource for researchers and conservation planners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DTRF2008 is a realization of the International Terrestrial Reference System ITRS. The DTRF2008 consists of station positions and velocities of global distributed observing stations of the space geodetic observation techniques VLBI, SLR, GPS and DORIS. The DTRF2008 was released in May 2010 and includes the observation data of the techniques up to and including 2008. The observation data are processed and submitted by the corresponding international services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2008 is an independent ITRS realization, which is computed on the basis of the same input data as the ITRF2008 (IGN, Paris). Both realizations differ with respect to their computation strategies: while the ITRF2008 is based on the combination of solutions, the DTRF2008 is computed by the combination of normal equations. The DTRF2008 comprises the coordinates of 559 GPS-, 106 VLBI-, 122 SLR- and 132 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period of 1983 to 2008. The station names are the official IERS indications: cdp numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The solution is available in different file formats (SINEX and SSC), see below. A detailed description of the solution is given by Seitz M. et al. (2012). The results of a comparison of DTRF2008 and ITRF2008 is given by Seitz M. et al. (2013). More information as well as residual time series of the station positions can be made available by request.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove-compute-restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.