976 resultados para Geochemistry of major elements
em Publishing Network for Geoscientific
Resumo:
Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.
Resumo:
Basement intersected in Holes 525A, 528, and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid- and lower NW flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge. The basalts were erupted approximately 70 Ma, a date consistent with formation at the paleo mid-ocean ridge. The basalt types vary from aphyric quartz tholeiites on the Ridge crest to highly Plagioclase phyric olivine tholeiites on the flank. These show systematic differences in incompatible trace element and isotopic composition, and many element and isotope ratio pairs form systematic trends with the Ridge crest basalts at one end and the highly phyric Ridge flank basalts at the other. The low 143Nd/144Nd (0.51238) and high 87Sr/86Sr (0.70512) ratios of the Ridge crest basalts suggest derivation from an old Nd/Sm and Rb/Sr enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset by somewhat lower 143Nd/144Nd values. The isotopic ratio trends may be extrapolated beyond the Ridge flank basalts (which have 143Nd/144Nd of 0.51270 and 87Sr/86Sr of 0.70417) in the direction of typical MORB compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end-member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing or partial melting. They also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources in the petrogenesis of Walvis Ridge basalts.
Resumo:
Sediments from Sites 582 (11 samples), 583 (19 samples), 584 (31 samples), 294 (1 sample), 296 (9 samples), 297 (3 samples), 436 (11 samples), and 439 (3 samples) were analyzed by X-ray fluorescence and/or instrumental neutron activation analysis. Ten major elements and 24 minor and trace elements (including 7 rare earth elements) were determined with these methods. Geochemistry varies systematically with both the site location and sediment age. Such variations are explained in terms of changes in sedimentation processes caused by plate motion and changes in ocean currents.