7 resultados para Genetic Analyses

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg's P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harbour seals in Svalbard have short longevity, despite being protected from human hunting and having limited terrestrial predation at their haulout sites, low contaminant burdens and no fishery by-catch issues. This led us to explore the diet of Greenland sharks (Somniosus microcephalus) in this region as a potential seal predator. We examined gastrointestinal tracts (GITs) from 45 Greenland sharks in this study. These sharks ranged from 229 to 381 cm in fork length and 136-700 kg in body mass; all were sexually immature. Seal and whale tissues were found in 36.4 and 18.2%, respectively, of the GITs that had contents (n = 33). Based on genetic analyses, the dominant seal prey species was the ringed seal (Pusa hispida); bearded seal (Erignathus barbatus) and hooded seal (Cystophora cristata) tissues were each found in a single shark. The sharks had eaten ringed seal pups and adults based on the presence of lanugo-covered prey (pups) and age determinations based on growth rings on claws (<1 year and adults). All of the whale tissue was from minke whale (Balenoptera acutorostrata) offal, from animals that had been harvested in the whale fishery near Svalbard. Fish dominated the sharks' diet, with Atlantic cod (Gadus morhua), Atlantic wolffish (Anarhichas lupus) and haddock (Melanogrammus aeglefinus) being the most important fish species. Circumstantial evidence suggests that these sharks actively prey on seals and fishes, in addition to eating carrion such as the whale tissue. Our study suggests that Greenland sharks may play a significant predatory role in Arctic food webs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidifications on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~760 µatm) and those exposed to present day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the evolutionary history of threatened populations can improve their conservation management. Re-establishment of past but recent gene flow could re-invigorate threatened populations and replenish genetic diversity, necessary for population persistence. One of the four nominal subspecies of the common yellow-tufted honeyeater, Lichenostomus melanops cassidix, is critically endangered despite substantial conservation efforts over 55 years. Using a combination of morphometric, genetic and modelling approaches we tested for its evolutionary distinctiveness and conservation merit. We confirmed that cassidix has at least one morphometric distinction. It also differs genetically from the other subspecies in allele frequencies but not phylogenetically, implying that its evolution was recent. Modelling historical distribution supported the lack of vicariance and suggested a possibility of gene flow among subspecies at least since the late Pleistocene. Multi-locus coalescent analyses indicated that cassidix diverged from its common ancestor with neighbouring subspecies gippslandicus sometime from the mid-Pleistocene to the Holocene, and that it has the smallest historical effective population size of all subspecies. It appears that cassidix diverged from its ancestor with gippslandicus through a combination of drift and local selection. From patterns of genetic subdivision on two spatial scales and morphological variation we concluded that cassidix, gippslandicus and (melanops + meltoni) are diagnosable as subspecies. Low genetic diversity and effective population size of cassidix may translate to low genetic fitness and evolutionary potential, thus managed gene flow from gippslandicus is recommended for its recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.