14 resultados para Generalized variance decompositions

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution quantitative diatom data are tabulated for the early part of the late Pliocene ( 3.25 to 2.08 Ma ) at DSDP Site 580 in the northwestern Pacific. Sample spacing averages 11 k.y. between 3.1 and 2.8 Ma, but increases to 14 to 19 k.y. prior to 3.1 Ma and after 2.8 Ma. Q-mode factor analysis of the middle Pliocene assemblage reveals four factors which explain 92.4% of the total variance of the 47 samples studied between 3.25 and 2.55 Ma. Three of the factors are closely related to modern subarctic, transitional, and subtropical elements, while the fourth factor, which is dominated by Coscinodiscus marginatus and the extinct Pliocene species Neodenticula kamtschatica, appears to correspond to a middle Pliocene precursor of the subarctic water mass. Knowledge of the modern and generalized Pliocene paleoclimatic relationships of various diatom taxa is used to generate a paleoclimate curve ("Twt") based on the ratio of warm-water (subtropical) to cold-water diatoms with warm-water transitional taxa (Thalassionema nitzschioides, Thalassiosira oestrupii, and Coscinodiscus radiatus) factored into the equation at an intermediate (0.5) value. The "Twt" ratios at more southerly DSDP Sites 579 and 578 are consistently higher (warmer) than those at Site 580 throughout the Pliocene, suggesting the validity of the ratio as a paleoclimatic index. Diatom paleoclimatic data reveal a middle Pliocene (3.1 to 3.0 Ma) warm interval at Site 580 during which paleotemperatures may have exceeded maximum Holocene values by 3 °- 5.5 °C at least three times. This middle Pliocene warm interval is also recognized by planktic foraminifers in the North Atlantic, and it appears to correspond with generalized depleted oxygen isotope values suggesting polar warming. The diatom "Twt" curve for Site 580 compares fairly well with radiolarian and silicoflagellate paleoclimatic curves for Site 580, planktic foraminiferal sea-surface temperature estimates for the North Atlantic, and benthic oxygen isotope curves for late Pliocene, although higher resolution studies on paired samples are required to test the correspondence of these various paleoclimatic indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.