7 resultados para Generalized Additive Models
em Publishing Network for Geoscientific
Resumo:
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
Resumo:
Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods.
Resumo:
This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.
Resumo:
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind/m**2 and 7.4 mg C/m**2. However, maximum salp densities sampled with the Bongo net reached 56 ind/m**2 and 341 mg C/m**2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 µg (pig)/ind/day or from 0.25 to 2.38 mg C/ind/day in salps from 10 to 40 mm oral-atrial length, accounting for 25-75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet/ind/h with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 µg (pig)/day or from 164 to 239 µg C/day. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability distribution is therefore normalised in these two regions (ie the space-time integral over each of the two regions is 1). The modelled outputs are on a UTM Zone 28 grid: however, for convenience, the latitude ("lat") and longitude ("lon") of each of these grid points are also included as a variable in the NetCDF file. The assignment of each grid point to either the Northern or Southern component (defined here as north/south of 53 N), is also included as a further variable ("component"). Finally, the day of year ("doy") is stored as the number of days elapsed from and included January 1 (ie doy=1 on January 1) - the year is thereafter divided into 180 grid points.