11 resultados para Geese.

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resource pulses are common in various ecosystems and often have large impacts on ecosystem functioning. Many animals hoard food during resource pulses, yet how this behaviour affects pulse diffusion through trophic levels is poorly known because of a lack of individual-based studies. Our objective was to examine how the hoarding behaviour of arctic foxes (Alopex lagopus) preying on a seasonal pulsed resource (goose eggs) was affected by annual and seasonal changes in resource availability. We monitored foraging behaviour of foxes in a greater snow goose (Chen caerulescens atlanticus) colony during 8 nesting seasons that covered 2 lemming cycles. The number of goose eggs taken and cached per hour by foxes declined 6-fold from laying to hatching, while the proportion of eggs cached remained constant. In contrast, the proportion of eggs cached by foxes fluctuated in response to the annual lemming cycle independently of the seasonal pulse of goose eggs. Foxes cached the majority of eggs taken (> 90%) when lemming abundance was high or moderate but only 40% during the low phase of the cycle. This likely occurred because foxes consumed a greater proportion of goose eggs to fulfill their energy requirement at low lemming abundance. Our study clearly illustrates a behavioural mechanism that extends the energetic benefits of a resource pulse. The hoarding behaviour of the main predator enhances the allochthonous nutrients input brought by migrating birds from the south into the arctic terrestrial ecosystem. This could increase average predator density and promote indirect interactions among prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3-5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992-2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs after arrival using local resources. Svalbard breeding barnacle geese Branta leucopsis have to fly non-stop for about 1100 km from their last continental staging site to the archipelago making the transport of body stores costly. However, environmental conditions at the breeding grounds are highly unpredictable favouring residual body stores allowing for egg production after arrival on the breeding grounds. We estimated the reliance on southern continental resources, i.e. body stores for egg formation, in barnacle geese using stable isotope ratios in the geese's forage along the flyway and in their eggs. Females adopted mixed breeding strategies by using southern resources as well as local resources to varying extents for egg formation. Southern capital in lipid-free yolk averaged 41% (range: 23-65%), early laid eggs containing more southern capital than eggs laid late in the season. Yolk lipids and albumen did not vary over time and averaged a southern capital proportion of 54% (range: 32-73%) and 47% (range: 25-88%), respectively. Our findings indicate that female geese vary the use of southern resources when synthesizing their eggs and this allocation also varies among egg tissues. Their mixed and flexible use of distant and local resources potentially allows for adaptive adjustments to environmental conditions encountered at the archipelago just before breeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and -0.77 µmol/m**2/s in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as. drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples (blood or tissue fluid) from 594 arctic foxes (Alopex lagopus), 390 Svalbard reindeer (Rangifer tarandus platyrhynchus), 361 sibling voles (Microtus rossiaemeridionalis), 17 walruses (Odobenus rosmarus), 149 barnacle geese (Branta leucopsis), 58 kittiwakes (Rissa tridactyla), and 27 glaucous gulls (Larus hyperboreus) from Svalbard and nearby waters were assayed for antibodies against Toxoplasma gondii using a direct agglutination test. The proportion of seropositive animals was 43% in arctic foxes, 7% in barnacle geese, and 6% (1 of 17) in walruses. There were no seropositive Svalbard reindeer, sibling voles, glaucous gulls, or kittiwakes. The prevalence in the arctic fox was relatively high compared to previous reports from canid populations. There are no wild felids in Svalbard and domestic cats are prohibited, and the absence of antibodies against T gondii among the herbivorous Svalbard reindeer and voles indicates that transmission of the parasite by oocysts is not likely to be an important mechanism in the Svalbard ecosystem. Our results suggest that migratory birds, such as the barnacle goose, may be the most important vectors bringing the parasite to Svalbard. In addition to transmission through infected prey and carrion, the age-seroprevalence profile in the fox population suggests that their infection levels are enhanced by vertical transmission.