16 resultados para Gammaproteobacteria

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7- 21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur com- ponents. High sulfate reduction rates as well as sulfide depleted in 34S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic- hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. We examined two adjacent sites within the Southern Basin and at the Chioggia inlet in autumn 2007 and summer 2008. A pilot study in June 2007 on a surface water sample from Chioggia with a rather high salinity of 36.9 PSU had revealed a conspicuous bloom of CF319a-positive cells likely affiliated with the Cytophaga /Flavobacteria cluster of Bacteroidetes. These flavobacterial abundances were one to two orders of magnitude higher than in other marine surface waters. DAPI-stained cells were identified as bacteria with the general bacterial probe mixture EUB338 I-III. CARD-FISH counts with group-specific probes confirmed the dominance of Bacteroidetes (CF319a), Alphaproteobacteria (ALF968), and Gammaproteobacteria (GAM42a). CARD-FISH showed thatBetaproteobacteria and Planctomycetes were minor components of the bacterioplankton in the Lagoon of Venice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogeny, abundance, and biogeography of the NOR5/OM60 clade was investigated. This clade includes "Congregibacter litoralis" strain KT71, the first cultured representative of marine aerobic anoxygenic phototrophic Gammaproteobacteria. Most of the NOR5/OM60 sequences were retrieved from marine coastal settings, whereas there were fewer from open-ocean surface waters, deep-sea sediment, freshwater, saline lakes and soil. The abundance of members of the NOR5/OM60 clade in various marine sites was determined by fluorescence in situ hybridization using a newly designed and optimized probe set. Relative abundances in coastal marine waters off the Yangtze estuary were up to 3% of the total 4',6-diamidino-2-phenylindole (DAPI) counts. A small cruise was undertaken from 2006-09-06 to 2006-09-08 in the Yangtze River estuary. Samples were taken from surface water, and immediately fixed with 1% paraformaldehyde (PFA) for 1 h, filtered onto polycarbonate filters (Millipore, 47 mm in diameter, 0.2 µm pore size) and stored frozen at -20 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. This study explores such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. The surface water samples were taken at Helgoland Island about 40 km offshore in the southeastern North Sea in the German Bight at the station 'Kabeltonne' (54° 11.3' N, 7° 54.0' E) between the main island and the minor island, Düne (German for 'dune') using small research vessels (http://www.awi.de/en/expedition/ships/more-ships.html). Water depths at this site fluctuate from 6 to 10 m over the tidal cycle. Samples were processed as described previously (Teeling et al., 2012; doi:10.7554/eLife.11888.001) in the laboratory of the Biological Station Helgoland within less than two hours after sampling. Assessment of absolute cell numbers and bacterioplankton community composition was carried out as described previously (Thiele et al., 2011; doi:10.1016/B978-0-444-53199-5.00056-7). To obtain total cell numbers, DNA of formaldehyde fixed cells filtered on 0.2 mm pore sized filters was stained with 4',6-diamidino-2-phenylindole (DAPI). Fluorescently labeled cells were subsequently counted on filter sections using an epifluores-cence microscope. Likewise, bacterioplankton community composition was assessed by catalyzedreporter deposition fluorescence in situ hybridization (CARD-FISH) of formaldehyde fixed cells on 0.2 mm pore sized filters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N2-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ~20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.