93 resultados para Galaxies : Elliptical And Lenticular, Cd
em Publishing Network for Geoscientific
Resumo:
The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.
Resumo:
Measurements of Sr/Ca of benthic foraminifera show a linear decrease with water depth which is superimposed upon significant variability identified by analyses of individual foraminifera. New data for Cd/Ca support previous work in defining a contrast between waters shallower and deeper than ~2500 m. Measured element partition coefficients in foraminiferal calcium carbonate relative to sea water (D) have been described by means of a one-box model in which elements are extracted by Rayleigh distillation from a biomineralization reservoir that serves for calcification with a constant fractionation factor (alpha), such that D = (1 - f**alpha)/(l - f), where f is the proportion of Ca remaining after precipitation. A modification to the model recognises differences in element speciation. The model is consistent with differences between D[Sr], D[Ba], and D[Cd] in benthic but not planktonic foraminifera. Depth variations in D for Sr and Ba are consistent with the model, as are differences in depth variation of D[Cd] in calcitic and aragonitic benthic foraminifera. The shallower depth variations may reflect increasing calcification rates with increasing water depth to an optimum of about 2500 m. Observations of unusually lower DCd for some deep waters, not accompanied by similar [Sr], or D[Ba] may be because of dissolution or a calcification response to a lower carbonate saturation state.
Resumo:
Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B(12) and carbon dioxide partial pressure (pCO(2)) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B(12)-replete conditions, cells grown at high pCO(2) had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO(2). At high pCO(2), B(12)-limited cells had ~50% lower specific growth and carbon fixation rates, and used Fe ~15-fold less efficiently, and Zn and Cd ~3-fold less efficiently, in comparison with B(12)-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO(2)/B(12)-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B(12)-replete cells were 5- to 14-fold higher in comparison with B(12)-limited cells, suggesting that >80% of cellular Co of B(12)-limited cells was likely from B(12). Our results demonstrate that CO(2) and vitamin B(12) interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.
Resumo:
Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.
Resumo:
A method of determination of low concentrations of zinc, cadmium, lead, and copper dissolved in seawater and interstitial water with use of inversion voltammetry with AC solution conditions is described. The optimum conditions for measurements with accumulation on a mercury-film electrode with a silver substrate are presented. Detection limit is 0.2 ?g/l for zinc and 0.05 ?g/l for cadmium, lead, and copper. Large number of determinations can be carried out during expeditions at natural pH of seawater containing these four metals.
Resumo:
A comparison of cadmium/calcium (Cd/Ca) records of benthic foraminifera from a deep Cape Basin and a deep eastern equatorial Pacific core suggests that over the past 400,000 years, the nutrient concentration of Circumpolar Deep Water (CPDW) has always been lower than that of the deep Pacific. The data further suggest that at the 100,000- and 23,000-year orbital periods, the contribution of North Atlantic Deep Water to CPDW is at a maximum during periods of ice growth and at a minimum during periods of ice decay. These results are not in agreement with results based on carbon isotope records of benthic foraminifera, which suggest intervals of CPDW nutrient enrichment relative to the deep Pacific and an approximately in-phase relationship between CPDW nutrient concentration and ice volume. Resolution of the apparent conflict between delta13C and Cd/Ca data may provide important constraints on past deep-ocean circulation and nutrient variability.