101 resultados para Galapagos Islands

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On Leg 121 of the Ocean Drilling Program, we recovered basaltic rocks from a total of three basement sites in the southern, central, and northern regions of Ninetyeast Ridge. These new sites complement the previous four basement holes drilled during Legs 22 and 26 of the Deep Sea Drilling Project, and confirm the predominantly tholeiitic, light rare earth element-enriched character of the basalts that cap the ridge. The basalts show marked iron enrichment; ferrobasalts occur at Sites 214 and 216 and oceanic andesites at Site 253. All of the basalts recovered during Leg 121 are altered, and range from aphyric olivine tholeiites (Site 756), to strongly plagioclase-phyric basalts (Site 757). Basalts from Site 758, which were clearly erupted in a submarine environment (pillow basalts are present in the section), are sparsely to strongly plagioclase-phyric. The basalts recovered at any one hole are isotopically homogeneous (except for the basalts from Site 758, which show a range of Pb isotopes), and it is possible to relate the magmas at any one site by high-level fractionation processes. However, there are significant variations in isotope ratios and highly incompatible element ratios between sites, which suggest that the mantle source for the ridge basalts was compositionally variable. Such variation, in view of the large volume of magmatic products that form the ridge system, is not surprising. There is not, however, a systematic variation in basalt composition along the ridge. We agree with previous models that relate Ninetyeast Ridge to a mantle plume in the southern Indian Ocean. The tholeiitic, iron-enriched, and voluminous character of the ridge basalts is typical of oceanic islands associated with plumes on or near a mid-ocean ridge (e.g., Iceland, Galapagos Islands, and St. Paul/Amsterdam islands). The absence of recovered alkalic suites is inconsistent with an intraplate setting, such as the Hawaiian Islands or Kerguelen Island. Thus, the major element data, like the gravity data, strongly suggest that the ridge was erupted on or very close to an active spreading center. Isotopically, the most likely plume that created the excess magmatism on the Ridge is the Kerguelen-Heard plume system, but the Ninetyeast Ridge basalts do not represent a simple mixing of the Kerguelen plume and mid-ocean Ninetyeast Ridge basalt mantle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strong El Niño developed in early 2015. Measurements from a research cruise on the RV Sonne in October 2015 near the equator east of the Galapagos Islands and off the shelf of Peru, are used to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this region. At the equator at 85°30' W, a clear temperature increase leading to lower densities in the upper 350 m, despite a concurrent salinity increase from 40 to 350 m, developed in October 2015. Lower nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were observed between 40 and 130 m. Except for the upper 60 m at 2°30' S, however, there was no obvious increase in oxygen concentrations at sampling stations just north (1° N) and south (2°30' S) of the equator at 85°30' W. In the equatorial current field, the Equatorial Undercurrent (EUC) east of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the equatorial channel between 1° S and 1° N, and a weak current band of 0.78 Sv located between 1° S and 2°30' S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El Niño events. Off the Peruvian shelf at ~9° S, where the sea surface temperature (SST) was elevated, upwelling was modified, and warm, saline and oxygen rich water was upwelled. Despite some weak El Niño related SST increase at ~12 to 16° S, the upwelling of cold, low salinity and oxygen-poor water was still active at the easternmost stations at three sections at ~12° S, ~14° S and ~16° S, while further west on these sections a transition to El Niño conditions appeared. Although in early 2015 the El Niño was strong and in October 2015 showed a clear El Niño influence on the EUC, in the eastern tropical Pacific the measurements only showed developing El Niño water mass distributions. In particular the oxygen distribution indicated the ongoing transition from 'typical' to El Niño conditions progressing southward along the Peruvian shelf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping is an important tool for the management of plant invasions. If landscapes are mapped in an appropriate way, results can help managers decide when and where to prioritize their efforts. We mapped vegetation with the aim of providing key information for managers on the extent, density and rates of spread of multiple invasive species across the landscape. Our case study focused on an area of Galapagos National Park that is faced with the challenge of managing multiple plant invasions. We used satellite imagery to produce a spatially-explicit database of plant species densities in the canopy, finding that 92% of the humid highlands had some degree of invasion and 41% of the canopy was comprised of invasive plants. We also calculated the rate of spread of eight invasive species using known introduction dates, finding that species with the most limited dispersal ability had the slowest spread rates while those able to disperse long distances had a range of spread rates. Our results on spread rate fall at the lower end of the range of published spread rates of invasive plants. This is probably because most studies are based on the entire geographic extent, whereas our estimates took plant density into account. A spatial database of plant species densities, such as the one developed in our case study, can be used by managers to decide where to apply management actions and thereby help curtail the spread of current plant invasions. For example, it can be used to identify sites containing several invasive plant species, to find the density of a particular species across the landscape or to locate where native species make up the majority of the canopy. Similar databases could be developed elsewhere to help inform the management of multiple plant invasions over the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between decadal to centennial changes in ocean circulation and climate is difficult to discern using the sparse and discontinuous instrumental record of climate and, as such, represents a large uncertainty in coupled ocean-atmosphere general circulation models. We present new modern and fossil coral radiocarbon (D14C) records from Palmyra (6°N, 162°W) and Christmas (2°N, 157°W) islands to constrain central tropical Pacific ocean circulation changes during the last millennium. Seasonally to annually resolved coral D14C measurements from the 10th, 12th-17th, and 20th centuries do not contain significant interannual to decadal-scale variations, despite large changes in coral d18O on these timescales. A centennial-scale increase in coral radiocarbon from the Medieval Climate Anomaly (~900-1200 AD) to the Little Ice Age (~1500-1800) can be largely explained by changes in the atmospheric D14C, as determined with a box model of Palmyra mixed layer D14C. However, large 12th century depletions in Palmyra coral D14C may reflect as much as a 100% increase in upwelling rates and/or a significant decrease in the D14C of higher-latitude source waters reaching the equatorial Pacific during this time. SEM photos reveal evidence for minor dissolution and addition of secondary aragonite in the fossil corals, but our results suggest that coral D14C is only compromised after moderate to severe diagenesis for these relatively young fossil corals.