290 resultados para GRAY-MATTER VOLUME
em Publishing Network for Geoscientific
Resumo:
The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.
Resumo:
We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate thefirst and filtering different volumes of water in order to evaluate the second.
Resumo:
Along three sections in the Kara Sea and Obskaya Guba concentrations of dissolved and particulate organic carbon (DOC and POC, respectively) in waters , as well as of organic carbon in bottom sediments (Corg) in September-October 2007 were determined. DOC varied from 6.3 to 2400 µg/l, POC - from 0.84 to 12.2 mg/l. For all samples the average DOC was 200 µg/l (n = 78; sigma = 368), the average POC - 2.7 mg/l (n = 92; sigma = 2.7). Concentrations of Corg in dried samples of upper layer bottom sediments varied from 0.13 to 2.10% (aver. = 0.9%; n = 21; sigma = 0.49%). It is shown that distribution of different forms of organic matter (OM) is an indicator of supply and scattering of particulate matter in the Kara Sea and that DOC and POC of the Kara Sea are formed under impact of runoff of the Ob and Yenisei Rivers. It is found that distribution of OM in bottom sediments is closely related to their grain size composition and to the structure of currents in the area. Variations in Corg concentration in bottom sediment cores from the zone of riverine and sea water mixing represent variability of OM burial.
Resumo:
Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.
Resumo:
We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.