8 resultados para GHZ

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Envisat Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) images are used to derive C-band HH-polarization normalized radar cross sections (NRCS). These are compared with ice-core analysis and visual ship-based observations of snow and ice properties observed according to the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol during two International Polar Year summer cruises (Oden 2008 and Palmer 2009) in West Antarctica. Thick first-year (TFY) and multi-year (MY) ice were the dominant ice types. The NRCS value ranges between -16.3 ± 1.1 and -7.6 ± 1.0 dB for TFY ice, and is -12.6 ± 1.3 dB for MY ice; for TFY ice, NRCS values increase from ~-15 dB to -9 dB from December/January to mid-February. In situ and ASPeCt observations are not, however, detailed enough to interpret the observed NRCS change over time. Co-located Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) vertically polarized 37 GHz brightness temperatures (TB37V), 7 day and 1 day averages as well as the TB37V difference between ascending and descending AMSR-E overpasses suggest the low NRCS values (-15 dB) are associated with snowmelt being still in progress, while the change towards higher NRCS values (-9dB) is caused by commencement of melt-refreeze cycles after about mid-January.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Advanced Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) is an L-band frequency (1.27 GHz) radar capable of continental-scale interferometric observations of ice sheet motion. Here, we show that PALSAR data yield excellent measurements of ice motion compared to C-band (5.6 GHz) radar data because of greater temporal coherence over snow and firn. We compare PALSAR velocities from year 2006 in Pine Island Bay, West Antarctica with those spanning years 1974 to 2007. Between 1996 and 2007, Pine Island Glacier sped up 42% and ungrounded over most of its ice plain. Smith Glacier accelerated 83% and ungrounded as well. Their largest speed up are recorded in 2007. Thwaites Glacier is not accelerating but widening with time and its eastern ice shelf doubled its speed. Total ice discharge from these glaciers increased 30% in 12 yr and the net mass loss increased 170% from 39 ± 15 Gt/yr to 105 ± 27 Gt/yr. Longer-term velocity changes suggest only a moderate loss in the 1970s. As the glaciers unground into the deeper, smoother beds inland, the mass loss from this region will grow considerably larger in years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new tool for large-area photo-mosaicking (LAPM tool). This tool was developed specifically for the purpose of underwater mosaicking, and it is aimed at providing end-user scientists with an easy and robust way to construct large photo-mosaics from any set of images. It is notably capable of constructing mosaics with an unlimited number of images on any modern computer (minimum 1.30 GHz, 2 GB RAM). The mosaicking process can rely on both feature matching and navigation data. This is complemented by an intuitive graphical user interface, which gives the user the ability to select feature matches between any pair of overlapping images. Finally, mosaic files are given geographic attributes that permit direct import into ArcGIS. So far, the LAPM tool has been successfully used to construct geo-referenced photo-mosaics with photo and video material from several scientific cruises. The largest photo-mosaic contained more than 5000 images for a total area of about 105,000 m**2. This is the first article to present and to provide a finished and functional program to construct large geo-referenced photo-mosaics of the seafloor using feature detection and matching techniques. It also presents concrete examples of photo-mosaics produced with the LAPM tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of brightness temperature (T(B)) at 6.9, 10.7, and 18.7 GHz from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations is investigated over five winter seasons (2002-2007) on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada. The T(B) measurements are compared to ice thicknesses obtained with a previously validated thermodynamic lake ice model. Lake ice thickness is found to explain much of the increase of T(B) at 10.7 and 18.7 GHz. T(B) acquired at 18.7 GHz (V-pol) and 10.7 GHz (H-pol) shows the strongest relation with simulated lake ice thickness over the period of study (R**2 > 0.90). A comparison of the seasonal evolution of T(B) for a cold winter (2003-2004) and a warm winter (2005-2006) reveals that the relationship between T(B) and ice growth is stronger in the cold winter (2003-2004). Overall, this letter shows the high sensitivity of T(B) to ice growth and, thus, the potential of AMSR-E mid-frequency channels to estimate ice thickness on large northern lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.