32 resultados para GENERAL CHEMISTRY

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of major ions, silicate and nutrients (total N and P) were measured in samples of surface water from 28 lakes in ice-free areas of northern Victoria Land (East Antarctica). Sixteen lakes were sampled during austral summers 2001/02, 2003/04, 2004/05 and 2005/06 to assess temporal variation in water chemistry. Although samples showed a wide range in ion concentrations, their composition mainly reflected that of seawater. In general, as the distance from the sea increased, the input of elements from the marine environment (through aerosols and seabirds) decreased and there was an increase in nitrate and sulfate concentrations. Antarctic lakes lack outflows and during the austral summer the melting and/or ablation of ice cover, water evaporation and leaching processes in dry soils determine a progressive increase in water ion concentrations. During the five-year monitoring survey, no statistically significant variation in the water chemistry were detected, except for a slight (hardly significant) increase in TN concentrations. However, Canonical Correspondence Analysis (CCA) indicated that other factors besides distance from the sea, the presence of nesting seabirds, the sampling time and percentage of ice cover affect the composition of water in Antarctic cold desert environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical, chemical, and mineralogical properties of a set of surface sediment samples collected along the Chilean continental slope (21-44°S) are used to characterise present-day sedimentation patterns and sediment provenance on the Chilean margin. Despite the presence of several exceptional latitudinal gradients in relief, oceanography, tectonic evolution, volcanic activity and onshore geology, the present-day input of terrigenous sediments to the Chilean continental margin appears to be mainly controlled by precipitation gradients, and source-rock composition in the hinterland. General trends in grain size denote a southward decrease in median grain-size of the terrigenous (Corganic, CaCO3 and Opal-free) fraction, which is interpreted as a shift from aeolian to fluvial sedimentation. This interpretation is supported by previous observations of southward increasing bulk sedimentation rates. North-south trends in sediment bulk chemistry are best recognised in the iron (Fe) and titanium (Ti) vs. potassium (K) and aluminium (Al) ratios of the sediments that most likely reflect the contribution of source rocks from the Andean volcanic arc. These ratios are high in the northernmost part, abruptly decrease at 25°S, and then more or less constantly increase southwards to a maximum at ~40°S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace elements, mineral chemistry, and Sr-Nd isotope ratios are reported for representative igneous rocks of Ocean Drilling Program Sites 767 and 770. The basaltic basement underlying middle Eocene radiolarianbearing red clays was reached at 786.7 mbsf and about 421 mbsf at Sites 767 and 770, respectively. At Site 770 the basement was drilled for about 106 m. Eight basaltic units were identified on the basis of mineralogical, petrographical, and geochemical data. They mainly consist of pillow lavas and pillow breccias (Units A, B, D, and H), intercalated with massive amygdaloidal lavas (Units Cl and C2) or relatively thin massive flows (Unit E). Two dolerite sills were also recognized (Units F and G). All the rocks studied show the effect of low-temperature seafloor alteration, causing almost total replacement of olivine and glass. Calcite, clays, and Fe-hydroxides are the most abundant secondary phases. Chemical mobilization due to the alteration processes has been evaluated by comparing elements that are widely considered mobile during halmyrolysis (such as low-field strength elements) with those insensitive to seafloor alteration (such as Nb). In general, MgO is removed and P2O5 occasionally enriched during the alteration of pillow lavas. Ti, Cs, Li, Rb, and K, which are the most sensitive indicators of rock/seawater interaction, are generally enriched. The most crystalline samples appear the least affected by chemical changes. Plagioclase and olivine are continuously present as phenocrysts, and clinopyroxene is confined in the groundmass. Textural and mineralogical features as well as crystallization sequences of Site 770 rocks are, in all, analogous to typical mid-ocean-ridge basalts (MORBs). Relatively high content of compatible trace elements, such as Ni and Cr, indicate that these rocks represent nearly primitive or weakly fractionated MORBs. All the studied rocks are geochemically within the spectrum of normal MORB compositional variation. Their Sr/Nd isotopic ratios plot on the mantle array (87Sr/87Sr 0.70324-0.70348 with 143Nd/144Nd 0.51298-0.51291) outside the field of Atlantic and Pacific MORBs. However, Sr and Nd isotopes are typical of both Indian Ocean MORBs and of some back-arc basalts, such as those of Lau Basin. The mantle source of Celebes basement basalts does not show a detectable influence of a subduction-related component. The geochemical and isotopic data so far obtained on the Celebes basement rocks do not allow a clear discrimination between mid-ocean ridge and back-arc settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interstitial waters were squeezed from strata recovered at Sites 637-641 of ODP Leg 103 on the Galicia margin, along the northwestern Iberian continental margin in the northeast Atlantic. Chemical profiles of Site 638 show the most complexity, which appears to be related to an unconformity in the strata between Cretaceous and Neogene sediments and to rapid deposition of Cretaceous syn-rift sediments upon pre-rift strata. Analyses of waters from all of the Leg 103 sites show generally antithetical trends for calcium and magnesium; calcium increases with depth as magnesium decreases. No calcium-magnesium 'crossover' profiles are observed in these data. Data from Site 637 show an unusual pattern; calcium increases with increasing depth, but magnesium remains relatively constant. Sulfate is either stable or shows an overall decrease with depth, and boron profiles show some structure. At all but one site (Site 638), strontium profiles do not show marked depth structure. The structure of alkalinity and silica profiles is highly site dependent. Bromide profiles are, in general, constant. In nearly every case, observed bromide concentrations are near average seawater values. Relatively low concentrations of iron and manganese are common within the upper 10 m of the sediment sequence and typically are near detection limits at deeper depths

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geochemical implications of thermally driven flow of seawater through oceanic crust on the mid-ocean ridge flank have been examined on a well-studied 80 km transect across the eastern flank of the Juan de Fuca Ridge at 48°N, using porewater and basement fluid samples obtained on ODP Leg 168. Fluid flow is recognised by near-basement reversals in porewater concentration gradients from altered values in the sediment section to seawater-like values in basaltic basement. In general, the basement fluids become more geochemically evolved with distance from the ridge and broadly follow basement temperature which ranges from not, vert, similar16° to 63°C. Although thermal effects of advective heat exchange are only seen within 20 km east of where basement is exposed near the ridge crest, chemical reactivity extends to all sites. Seawater passing through oceanic crust has reacted with basement rocks leading to increases in Ca2+ and decreases in alkalinity, Mg2+, Na+, K+, SO42- and delta18O. Sr isotope exchange between seawater and oceanic crust off axis is unequivocally demonstrated with endmember 87Sr/86Sr ~ 0.707. Evidence of more evolved fluids is seen at sites where rapid upwelling of fluids through sediments occurs. Chlorinities of the basement fluids are consistent with post-glacial seawater and thus a short residence time in the crust. Rates of lateral flow have been by estimated by modelling porewater sulphate gradients, using Cl as a glacial chronometer, and from radiocarbon dating of basal fluids. All three methods reveal fluid flow with 14C ages less than 10,000 yr and particle velocities of ~1-5 m/yr, in agreement with thermally constrained volumetric flow rates through a ~600 m thick permeable layer of ~10% porosity. Delta(element)/Delta(heat) extraction ratios are similar to values for ridge-crest hydrothermal systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique record of the chemical evolution of seawater during hydrothermal recharge into oceanic crust is preserved by anhydrite from the volcanic sequences and sheeted dike complex in ODP Hole 504B. Chemical and isotopic analyses 87Sr/86Sr, delta18O, delta34S of anhydrite constrain the changing composition of fluids due to reaction with basalt. There is a general trend of decreasing 87Sr/86Sr of anhydrite, corresponding to the minor incorporation of basaltic strontium with depth in the volcanic rocks. 87Sr/86Sr ratios decrease rapidly with depth in the dikes to values identical to host basalt (0.7029). Sr/Ca ratios (<0.1 mmol/mol) suggest that recharge fluids have very low Sr concentrations and fluids evolve by first precipitating Sr-bearing phases before extensive exchange of Sr with the host basalt. There is a background trend of decreasing sulfate delta18O with depth from +12-13? in the lower volcanics to +7? in the lower sheeted dikes recording an increase in recharge fluid temperature from c. 150° to c. 250°C, and confirming the presence of sulfate in hydrothermal fluids at elevated temperatures. From the amount of anhydrite recovered from Hole 504B and the amount of seawater sulfur that has been reduced to sulfide, a minimum seawater recharge flux can be calculated. This value is 4-25 times lower than estimates of high-temperature fluid fluxes based on either thermal constraints or global chemical budgets and suggests that there is significant deficit of seawater-derived sulfur in the oceanic crust. Only a minor proportion of the seawater that percolates into the crust near the axis is heated to high temperatures and exits as black smoker-type fluids. A significant proportion of the axial heat loss must be advected at 200-250°C by sulfate-bearing hydrothermal solutions that egress diffusely from the crust. These fluids penetrate into the dikes and exchange both heat and chemical tracers without the extensive clogging of porosity by anhydrite precipitation, which would halt hydrothermal circulation for any reasonable fluid flux. The heating of the major proportion of hydrothermal fluids to only moderate temperatures (c. 250°C) reconciles estimates of hydrothermal fluxes derived from thermal models and global geochemical budgets. The flux of hydrothermal sulfate would be of a magnitude similar to the riverine input, and oxygen-isotopic exchange at 200-250°C between dissolved sulfate and recharge fluids during hydrothermal circulation provides a mechanism to continuously buffer seawater sulfate oxygen to the light isotopic composition observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Quaternary palaeoenvironmental history of the southern Windmill Islands, East Antarctica, has been reconstructed using diatom assemblages from two long, well-dated sediment cores taken in two marine bays. The diatom assemblage of the lowest sediment layers suggests a warm climate with mostly open water conditions during the late Pleistocene. During the following glacial, the Windmill Islands were covered by grounded ice preventing any in situ bioproductivity. Following deglaciation, a sapropel with a well-preserved diatom assemblage was deposited from ~10500 cal yr BP. Between ~10500 and ~4000 cal yr BP, total organic carbon (Corg) and total diatom valve concentrations as well as the diatom species composition suggest relatively cool summer temperatures. Hydrological conditions in coastal bays were characterised by combined winter sea-ice and open water conditions. This extensive period of glacial retreat was followed by the Holocene optimum (~4000 to ~1000 cal yr BP), which occurred later in the southern Windmill Islands than in most other Antarctic coastal regions. Diatom assemblages in this period suggest ice-free conditions and meltwater-stratified waters in the marine bays during summer, which is also reflected in high proportions of freshwater diatoms in the sediments. The diatom assemblage in the upper sediments of both cores indicates Neoglacial cooling from ~1000 cal yr BP, which again led to seasonally persistent sea-ice on the bays. The Holocene optimum and cooling trends in the Windmill Islands did not occur contemporaneously with other Antarctic coastal regions, showing that the here presented record reflects partly local environmental conditions rather than global climatic trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight/m**2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2/m**2/d, and there was a slight net dissolution of CaCO3 (0.8 mmol/m**2/d). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2/m**2/d), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide-ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short-term CO2 perturbation studies. Here we present results from the first long-term CO2 perturbation study on the dominant reef-building cold-water coral Lophelia pertusa and relate them to results from a short-term study to compare the effect of exposure time on the coral's responses. Short-term (one week) high CO2 exposure resulted in a decline of calcification by 26-29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long-term (six months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub-saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long-term incubations in ocean acidification research. To conclude on the sensitivity of cold-water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.